tdlight/README.md

130 lines
5.6 KiB
Markdown
Raw Normal View History

# TDLib
TDLib (Telegram Database library) is a cross-platform library for building [Telegram](https://telegram.org) clients. It can be easily used from almost any programming language.
## Table of Contents
- [Features](#features)
- [Examples and documentation](#usage)
- [Dependencies](#dependencies)
- [Building](#building)
- [Installing dependencies](#installing-dependencies)
- [Using in CMake C++ projects](#using-cxx)
- [Using in Java projects](#using-java)
- [Using with other programming languages](#using-json)
- [License](#license)
<a name="features"></a>
## Features
`TDLib` has many advantages. Notably `TDLib` is:
* **Cross-platform**: `TDLib` can be used on Android, iOS, Windows, macOS, Linux, Windows Phone, WebAssembly, watchOS, tvOS, Tizen, Cygwin. It should also work on other *nix systems with or without minimal effort.
* **Multilanguage**: `TDLib` can be easily used with any programming language that is able to execute C functions. Additionally it already has native Java (using JNI) bindings and C# (using C++/CLI and C++/CX) bindings.
* **Easy to use**: `TDLib` takes care of all network implementation details, encryption and local data storage.
* **High-performance**: in the [Telegram Bot API](https://core.telegram.org/bots/api), each `TDLib` instance handles more than 18000 active bots simultaneously.
* **Well-documented**: all `TDLib` API methods and public interfaces are fully documented.
* **Consistent**: `TDLib` guarantees that all updates are delivered in the right order.
* **Reliable**: `TDLib` remains stable on slow and unreliable Internet connections.
* **Secure**: all local data is encrypted using a user-provided encryption key.
* **Fully-asynchronous**: requests to `TDLib` don't block each other or anything else, responses are sent when they are available.
<a name="usage"></a>
## Examples and documentation
Take a look at our [examples](https://github.com/tdlib/td/tree/master/example) and [documentation](https://core.telegram.org/tdlib/docs/).
<a name="dependencies"></a>
## Dependencies
`TDLib` depends on:
* C++14 compatible compiler (Clang 3.4+, GCC 4.9+, MSVC 19.0+ (Visual Studio 2015+), Intel C++ Compiler 17+)
* OpenSSL
* zlib
* gperf (build only)
* CMake (3.0.2+, build only)
* PHP (optional, for docs generation)
* Doxygen (optional, for docs generation)
<a name="building"></a>
## Building
Install all `TDLib` dependencies as described in [Installing dependencies](#installing-dependencies).
Then enter directory containing `TDLib` sources and compile them using CMake:
```
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake --build .
```
<a name="installing-dependencies"></a>
### Installing dependencies
<a name="macos"></a>
#### macOS
2018-02-02 04:25:04 +01:00
* Install the latest Xcode command line tools.
* Install other dependencies, for example, using [Homebrew](https://brew.sh):
```
brew install gperf cmake openssl
```
* Build `TDLib` with CMake as explained in [building](#building). You may need to manually specify path to the installed OpenSSL to CMake, e.g.,
```
cmake -DCMAKE_BUILD_TYPE=Release -DOPENSSL_ROOT_DIR=/usr/local/opt/openssl/ ..
```
<a name="windows"></a>
#### Windows
* Download and install [gperf](https://sourceforge.net/projects/gnuwin32/files/gperf/3.0.1/). Add the path to gperf to the PATH environment variable.
* Install [vcpkg](https://github.com/Microsoft/vcpkg#quick-start).
* Run the following commands:
```
C:\src\vcpkg> .\vcpkg install openssl zlib
```
* Build `TDLib` with CMake as explained in [building](#building), but instead of `cmake -DCMAKE_BUILD_TYPE=Release ..` use
```
cmake -DCMAKE_TOOLCHAIN_FILE=C:\src\vcpkg\scripts\buildsystems\vcpkg.cmake ..
```
<a name="linux"></a>
#### Linux
* Install all dependencies using your package manager.
<a name="using-cxx"></a>
## Using in CMake C++ projects
For C++ projects that use CMake, the best approach is to build `TDLib` as part of your project or to use a prebuilt installation.
There are several libraries that you could use in your CMake project:
* Td::TdJson, Td::TdJsonStatic — dynamic and static version of a JSON interface. This has a simple C interface, so it can be easily used with any programming language that is able to execute C functions.
* Td::TdStatic — static library with C++ interface.
* Td::TdCoreStatic — static library with low-level C++ interface intended mostly for internal usage.
For example, part of your CMakeLists.txt may look like this:
```
add_subdirectory(td)
target_link_libraries(YourTarget PRIVATE Td::TdStatic)
```
Or you could install `TDLib` and then reference it in your CMakeLists.txt like this:
```
find_package(Td 1.1.3 REQUIRED)
target_link_libraries(YourTarget PRIVATE Td::TdStatic)
```
See [example/cpp/CMakeLists.txt](https://github.com/tdlib/td/tree/master/example/cpp/CMakeLists.txt).
<a name="using-java"></a>
## Using in Java projects
TDLib provides native Java interface through JNI.
See [example/java](https://github.com/tdlib/td/tree/master/example/java) for example of using TDLib from Java and detailed build and usage instructions.
<a name="using-json"></a>
## Using from other programming languages
`TDLib` provides efficient native C++, Java, and C# (will be released soon) interfaces.
But for most use cases we suggest to use the JSON interface, which can be easily used with any programming language that is able to execute C functions.
See [example/python/tdjson_example.py](https://github.com/tdlib/td/tree/master/example/python/tdjson_example.py) for an example of such usage.
<a name="license"></a>
## License
TDLib is licensed under the terms of the Boost Software License. See [LICENSE_1_0.txt](http://www.boost.org/LICENSE_1_0.txt) for more information.