FlatHashMap improvements.
This commit is contained in:
parent
d5e163cd9d
commit
4eacaa3ebd
@ -26,6 +26,7 @@
|
||||
#include "td/utils/common.h"
|
||||
#include "td/utils/crypto.h"
|
||||
#include "td/utils/logging.h"
|
||||
#include "td/utils/misc.h"
|
||||
#include "td/utils/Random.h"
|
||||
#include "td/utils/SliceBuilder.h"
|
||||
|
||||
|
@ -13,7 +13,6 @@
|
||||
#include "td/telegram/DialogId.h"
|
||||
#include "td/telegram/Global.h"
|
||||
#include "td/telegram/InlineQueriesManager.h"
|
||||
#include "td/telegram/MessageContentType.h"
|
||||
#include "td/telegram/MessageId.h"
|
||||
#include "td/telegram/MessagesManager.h"
|
||||
#include "td/telegram/net/DcId.h"
|
||||
|
@ -20,6 +20,7 @@
|
||||
#include "td/utils/Status.h"
|
||||
|
||||
#include <mutex>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
namespace td {
|
||||
|
@ -28,6 +28,7 @@ if (CRC32C_FOUND)
|
||||
set(TD_HAVE_CRC32C 1)
|
||||
endif()
|
||||
|
||||
find_package(ABSL QUIET)
|
||||
if (ABSL_FOUND)
|
||||
set(TD_HAVE_ABSL 1)
|
||||
endif()
|
||||
@ -355,7 +356,7 @@ if (CRC32C_FOUND)
|
||||
target_link_libraries(tdutils PRIVATE crc32c)
|
||||
endif()
|
||||
if (ABSL_FOUND)
|
||||
target_link_libraries(tdutils PUBLIC absl::flat_hash_map absl::flat_hash_set absl::hash)
|
||||
target_link_libraries(tdutils SYSTEM PUBLIC absl::flat_hash_map absl::flat_hash_set absl::hash)
|
||||
endif()
|
||||
|
||||
if (WIN32)
|
||||
@ -386,12 +387,12 @@ install(TARGETS tdutils EXPORT TdTargets
|
||||
ARCHIVE DESTINATION "${CMAKE_INSTALL_LIBDIR}"
|
||||
)
|
||||
|
||||
find_package(ABSL)
|
||||
find_package(benchmark)
|
||||
find_package(gflags)
|
||||
find_package(folly)
|
||||
find_package(benchmark QUIET)
|
||||
find_package(gflags QUIET)
|
||||
find_package(folly QUIET)
|
||||
|
||||
if (ABSL_FOUND AND benchmark_FOUND AND gflags_FOUND AND folly_FOUND)
|
||||
add_executable(benchmark-hashset ${CMAKE_CURRENT_SOURCE_DIR}/test/hashset_benchmark.cpp)
|
||||
target_link_libraries(benchmark-hashset tdutils benchmark::benchmark Folly::folly ${gflags_LIBRARIES} absl::flat_hash_map absl::hash)
|
||||
target_link_libraries(benchmark-hashset PRIVATE tdutils)
|
||||
target_link_libraries(benchmark-hashset SYSTEM PRIVATE benchmark::benchmark Folly::folly ${gflags_LIBRARIES} absl::flat_hash_map absl::hash)
|
||||
endif()
|
||||
|
@ -204,7 +204,7 @@ class ChainScheduler final : public ChainSchedulerBase {
|
||||
chain_info.active_tasks--;
|
||||
}
|
||||
if (was_active && failed) {
|
||||
chain_info.generation = std::max(chain_info.generation, task_chain_info.chain_node.generation + 1);
|
||||
chain_info.generation = td::max(chain_info.generation, task_chain_info.chain_node.generation + 1);
|
||||
}
|
||||
|
||||
auto it = limited_tasks_.find(task_chain_info.chain_id);
|
||||
|
@ -8,10 +8,10 @@
|
||||
|
||||
#include "td/utils/bits.h"
|
||||
#include "td/utils/common.h"
|
||||
#include "td/utils/logging.h"
|
||||
|
||||
#include <cstddef>
|
||||
#include <functional>
|
||||
#include <initializer_list>
|
||||
#include <iterator>
|
||||
#include <new>
|
||||
#include <unordered_map>
|
||||
@ -91,7 +91,7 @@ class FlatHashMapImpl {
|
||||
}
|
||||
Node(KeyT key, ValueT value) : first(std::move(key)) {
|
||||
new (&second) ValueT(std::move(value));
|
||||
CHECK(!empty());
|
||||
DCHECK(!empty());
|
||||
}
|
||||
~Node() {
|
||||
if (!empty()) {
|
||||
@ -134,7 +134,6 @@ class FlatHashMapImpl {
|
||||
using NodeIterator = typename fixed_vector<Node>::iterator;
|
||||
using ConstNodeIterator = typename fixed_vector<Node>::const_iterator;
|
||||
|
||||
// define key_type and value_type for benchmarks
|
||||
using key_type = KeyT;
|
||||
using value_type = Node;
|
||||
|
||||
@ -228,11 +227,19 @@ class FlatHashMapImpl {
|
||||
FlatHashMapImpl(std::initializer_list<Node> nodes) {
|
||||
reserve(nodes.size());
|
||||
for (auto &node : nodes) {
|
||||
size_t bucket = calc_bucket(node.key());
|
||||
while (!nodes_[bucket].empty()) {
|
||||
auto bucket = calc_bucket(node.first);
|
||||
while (true) {
|
||||
if (nodes_[bucket].key() == node.first) {
|
||||
nodes_[bucket].second = node.second;
|
||||
break;
|
||||
}
|
||||
if (nodes_[bucket].empty()) {
|
||||
nodes_[bucket].emplace(node.first, node.second);
|
||||
used_nodes_++;
|
||||
break;
|
||||
}
|
||||
next_bucket(bucket);
|
||||
}
|
||||
nodes_[bucket].emplace(node.first, node.second);
|
||||
}
|
||||
}
|
||||
|
||||
@ -256,7 +263,7 @@ class FlatHashMapImpl {
|
||||
if (empty()) {
|
||||
return end();
|
||||
}
|
||||
size_t bucket = calc_bucket(key);
|
||||
auto bucket = calc_bucket(key);
|
||||
while (true) {
|
||||
if (nodes_[bucket].key() == key) {
|
||||
return Iterator{nodes_.begin() + bucket, this};
|
||||
@ -302,7 +309,7 @@ class FlatHashMapImpl {
|
||||
}
|
||||
|
||||
void reserve(size_t size) {
|
||||
size_t want_size = normalize(size * 10 / 6 + 1);
|
||||
size_t want_size = normalize(size * 5 / 3 + 1);
|
||||
// size_t want_size = size * 2;
|
||||
if (want_size > nodes_.size()) {
|
||||
resize(want_size);
|
||||
@ -314,7 +321,7 @@ class FlatHashMapImpl {
|
||||
if (unlikely(should_resize())) {
|
||||
grow();
|
||||
}
|
||||
size_t bucket = calc_bucket(key);
|
||||
auto bucket = calc_bucket(key);
|
||||
while (true) {
|
||||
if (nodes_[bucket].key() == key) {
|
||||
return {Iterator{nodes_.begin() + bucket, this}, false};
|
||||
@ -401,8 +408,8 @@ class FlatHashMapImpl {
|
||||
bool should_resize() const {
|
||||
return should_resize(used_nodes_ + 1, nodes_.size());
|
||||
}
|
||||
static bool should_resize(size_t used_count, size_t buckets_count) {
|
||||
return used_count * 10 > buckets_count * 6;
|
||||
static bool should_resize(size_t used_count, size_t bucket_count) {
|
||||
return used_count * 5 > bucket_count * 3;
|
||||
}
|
||||
|
||||
size_t calc_bucket(const KeyT &key) const {
|
||||
@ -410,13 +417,16 @@ class FlatHashMapImpl {
|
||||
}
|
||||
|
||||
static size_t normalize(size_t size) {
|
||||
return size_t(1) << (64 - count_leading_zeroes64(size));
|
||||
// return size ? (size | 7) : 0;
|
||||
return static_cast<size_t>(1) << (64 - count_leading_zeroes64(size));
|
||||
}
|
||||
|
||||
void grow() {
|
||||
size_t want_size = normalize(td::max(nodes_.size() * 2 - 1, (used_nodes_ + 1) * 10 / 6 + 1));
|
||||
size_t want_size = normalize(td::max(nodes_.size() * 2 - 1, (used_nodes_ + 1) * 5 / 3 + 1));
|
||||
// size_t want_size = td::max(nodes_.size(), (used_nodes_ + 1)) * 2;
|
||||
resize(want_size);
|
||||
}
|
||||
|
||||
void resize(size_t new_size) {
|
||||
fixed_vector<Node> old_nodes(new_size);
|
||||
std::swap(old_nodes, nodes_);
|
||||
|
@ -35,5 +35,15 @@ TEST(FlatHashMap, basic) {
|
||||
{
|
||||
td::FlatHashMap<int, std::string> map = {{1, "hello"}, {2, "world"}};
|
||||
ASSERT_EQ("hello", map[1]);
|
||||
ASSERT_EQ("world", map[2]);
|
||||
ASSERT_EQ(2u, map.size());
|
||||
ASSERT_EQ("", map[3]);
|
||||
ASSERT_EQ(3u, map.size());
|
||||
}
|
||||
|
||||
{
|
||||
td::FlatHashMap<int, std::string> map = {{1, "hello"}, {1, "world"}};
|
||||
ASSERT_EQ("world", map[1]);
|
||||
ASSERT_EQ(1u, map.size());
|
||||
}
|
||||
}
|
||||
|
@ -1,24 +1,35 @@
|
||||
#include <cstdio>
|
||||
|
||||
#include <benchmark/benchmark.h>
|
||||
#include <td/utils/Random.h>
|
||||
#include <td/utils/FlatHashMap.h>
|
||||
#include <unordered_map>
|
||||
#include <map>
|
||||
#include <absl/container/flat_hash_map.h>
|
||||
#include <absl/hash/hash.h>
|
||||
#include <folly/container/F14Map.h>
|
||||
#include "td/utils/Time.h"
|
||||
#include "td/utils/logging.h"
|
||||
//
|
||||
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2022
|
||||
//
|
||||
// Distributed under the Boost Software License, Version 1.0. (See accompanying
|
||||
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
|
||||
//
|
||||
#include "td/utils/common.h"
|
||||
#include "td/utils/FlatHashMap.h"
|
||||
#include "td/utils/format.h"
|
||||
#include "td/utils/Hash.h"
|
||||
#include "td/utils/logging.h"
|
||||
#include "td/utils/Random.h"
|
||||
#include "td/utils/Slice.h"
|
||||
#include "td/utils/Span.h"
|
||||
#include "td/utils/Time.h"
|
||||
|
||||
#include <absl/container/flat_hash_map.h>
|
||||
#include <absl/hash/hash.h>
|
||||
#include <algorithm>
|
||||
#include <benchmark/benchmark.h>
|
||||
#include <folly/container/F14Map.h>
|
||||
#include <map>
|
||||
#include <unordered_map>
|
||||
#include <utility>
|
||||
|
||||
template <class TableT>
|
||||
void reserve(TableT &table, size_t size) {
|
||||
static void reserve(TableT &table, size_t size) {
|
||||
table.reserve(size);
|
||||
}
|
||||
|
||||
template <class A, class B>
|
||||
void reserve(std::map<A, B> &table, size_t size) {
|
||||
static void reserve(std::map<A, B> &table, size_t size) {
|
||||
}
|
||||
|
||||
template <class KeyT, class ValueT>
|
||||
@ -58,14 +69,12 @@ class VectorTable {
|
||||
return it->second;
|
||||
}
|
||||
auto find(const KeyT &needle) {
|
||||
return std::find_if(table_.begin(), table_.end(), [&](auto &key) {
|
||||
return key.first == needle;
|
||||
});
|
||||
return std::find_if(table_.begin(), table_.end(), [&](auto &key) { return key.first == needle; });
|
||||
}
|
||||
|
||||
private:
|
||||
using KeyValue = value_type;
|
||||
std::vector<KeyValue> table_;
|
||||
td::vector<KeyValue> table_;
|
||||
};
|
||||
|
||||
template <class KeyT, class ValueT>
|
||||
@ -79,9 +88,8 @@ class SortedVectorTable {
|
||||
}
|
||||
|
||||
ValueT &operator[](const KeyT &needle) {
|
||||
auto it = std::lower_bound(table_.begin(), table_.end(), needle, [](auto l, auto r) {
|
||||
return l.first < r;
|
||||
});
|
||||
auto it = std::lower_bound(table_.begin(), table_.end(), needle,
|
||||
[](const auto &l, const auto &r) { return l.first < r; });
|
||||
if (it == table_.end() || it->first != needle) {
|
||||
it = table_.insert(it, {needle, ValueT{}});
|
||||
}
|
||||
@ -89,9 +97,8 @@ class SortedVectorTable {
|
||||
}
|
||||
|
||||
auto find(const KeyT &needle) {
|
||||
auto it = std::lower_bound(table_.begin(), table_.end(), needle, [](auto l, auto r) {
|
||||
return l.first < r;
|
||||
});
|
||||
auto it = std::lower_bound(table_.begin(), table_.end(), needle,
|
||||
[](const auto &l, const auto &r) { return l.first < r; });
|
||||
if (it != table_.end() && it->first == needle) {
|
||||
return it;
|
||||
}
|
||||
@ -100,7 +107,7 @@ class SortedVectorTable {
|
||||
|
||||
private:
|
||||
using KeyValue = value_type;
|
||||
std::vector<KeyValue> table_;
|
||||
td::vector<KeyValue> table_;
|
||||
};
|
||||
|
||||
template <class KeyT, class ValueT, class HashT = td::Hash<KeyT>>
|
||||
@ -135,21 +142,20 @@ class SimpleHashTable {
|
||||
i = 0;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
private:
|
||||
using KeyValue = value_type;
|
||||
struct Node {
|
||||
td::uint64 hash{0};
|
||||
std::size_t hash{0};
|
||||
KeyT key;
|
||||
ValueT value;
|
||||
};
|
||||
std::vector<Node> nodes_;
|
||||
td::vector<Node> nodes_;
|
||||
|
||||
void insert(KeyT key, ValueT value) {
|
||||
auto hash = HashT()(key);
|
||||
size_t i = hash % nodes_.size();
|
||||
std::size_t i = hash % nodes_.size();
|
||||
while (true) {
|
||||
if (nodes_[i].hash == 0 || (nodes_[i].hash == hash && nodes_[i].key == key)) {
|
||||
nodes_[i].value = value;
|
||||
@ -166,15 +172,15 @@ class SimpleHashTable {
|
||||
};
|
||||
|
||||
template <typename TableT>
|
||||
void BM_Get(benchmark::State& state) {
|
||||
size_t n = state.range(0);
|
||||
constexpr size_t batch_size = 1024;
|
||||
static void BM_Get(benchmark::State &state) {
|
||||
std::size_t n = state.range(0);
|
||||
constexpr std::size_t BATCH_SIZE = 1024;
|
||||
td::Random::Xorshift128plus rnd(123);
|
||||
using Key = typename TableT::key_type;
|
||||
using Value = typename TableT::value_type::second_type;
|
||||
using KeyValue = std::pair<Key, Value>;
|
||||
std::vector<KeyValue> data;
|
||||
std::vector<Key> keys;
|
||||
td::vector<KeyValue> data;
|
||||
td::vector<Key> keys;
|
||||
|
||||
for (size_t i = 0; i < n; i++) {
|
||||
auto key = rnd();
|
||||
@ -194,19 +200,19 @@ void BM_Get(benchmark::State& state) {
|
||||
return keys[key_i];
|
||||
};
|
||||
|
||||
while (state.KeepRunningBatch(batch_size)) {
|
||||
for (size_t i = 0; i < batch_size; i++) {
|
||||
while (state.KeepRunningBatch(BATCH_SIZE)) {
|
||||
for (size_t i = 0; i < BATCH_SIZE; i++) {
|
||||
benchmark::DoNotOptimize(table.find(next_key()));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename TableT>
|
||||
void BM_find_same(benchmark::State& state) {
|
||||
static void BM_find_same(benchmark::State &state) {
|
||||
td::Random::Xorshift128plus rnd(123);
|
||||
TableT table;
|
||||
size_t N = 100000;
|
||||
size_t batch_size = 1024;
|
||||
constexpr size_t N = 100000;
|
||||
constexpr size_t BATCH_SIZE = 1024;
|
||||
reserve(table, N);
|
||||
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
@ -216,19 +222,19 @@ void BM_find_same(benchmark::State& state) {
|
||||
auto key = td::Random::secure_uint64();
|
||||
table[key] = 123;
|
||||
|
||||
while (state.KeepRunningBatch(batch_size)) {
|
||||
for (size_t i = 0; i < batch_size; i++) {
|
||||
while (state.KeepRunningBatch(BATCH_SIZE)) {
|
||||
for (size_t i = 0; i < BATCH_SIZE; i++) {
|
||||
benchmark::DoNotOptimize(table.find(key));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename TableT>
|
||||
void BM_emplace_same(benchmark::State& state) {
|
||||
static void BM_emplace_same(benchmark::State &state) {
|
||||
td::Random::Xorshift128plus rnd(123);
|
||||
TableT table;
|
||||
size_t N = 100000;
|
||||
size_t batch_size = 1024;
|
||||
constexpr size_t N = 100000;
|
||||
constexpr size_t BATCH_SIZE = 1024;
|
||||
reserve(table, N);
|
||||
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
@ -238,17 +244,18 @@ void BM_emplace_same(benchmark::State& state) {
|
||||
auto key = 123743;
|
||||
table[key] = 123;
|
||||
|
||||
while (state.KeepRunningBatch(batch_size)) {
|
||||
for (size_t i = 0; i < batch_size; i++) {
|
||||
while (state.KeepRunningBatch(BATCH_SIZE)) {
|
||||
for (size_t i = 0; i < BATCH_SIZE; i++) {
|
||||
benchmark::DoNotOptimize(table.emplace(key, 43784932));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <typename TableT>
|
||||
void bench_create(td::Slice name) {
|
||||
static void benchmark_create(td::Slice name) {
|
||||
td::Random::Xorshift128plus rnd(123);
|
||||
{
|
||||
size_t N = 10000000;
|
||||
constexpr size_t N = 10000000;
|
||||
TableT table;
|
||||
reserve(table, N);
|
||||
auto start = td::Timestamp::now();
|
||||
@ -256,10 +263,11 @@ void bench_create(td::Slice name) {
|
||||
table.emplace(rnd(), i);
|
||||
}
|
||||
auto end = td::Timestamp::now();
|
||||
LOG(INFO) << name << ":" << "create " << N << " elements: " << td::format::as_time(end.at() - start.at());
|
||||
LOG(INFO) << name << ":"
|
||||
<< "create " << N << " elements: " << td::format::as_time(end.at() - start.at());
|
||||
|
||||
double res = 0;
|
||||
std::vector<std::pair<size_t, td::format::Time>> pauses;
|
||||
td::vector<std::pair<size_t, td::format::Time>> pauses;
|
||||
for (size_t i = 0; i < N; i++) {
|
||||
auto emplace_start = td::Timestamp::now();
|
||||
table.emplace(rnd(), i);
|
||||
@ -271,50 +279,43 @@ void bench_create(td::Slice name) {
|
||||
}
|
||||
}
|
||||
|
||||
LOG(INFO) << name << ":" << "create another " << N << " elements, max pause = " << td::format::as_time(res) << " " << pauses;
|
||||
LOG(INFO) << name << ":"
|
||||
<< "create another " << N << " elements, max pause = " << td::format::as_time(res) << " " << pauses;
|
||||
}
|
||||
}
|
||||
|
||||
#define FOR_EACH_TABLE(F) \
|
||||
F(td::FlatHashMapImpl) \
|
||||
F(folly::F14FastMap) \
|
||||
F(absl::flat_hash_map) \
|
||||
F(std::unordered_map) \
|
||||
F(std::map) \
|
||||
F(td::FlatHashMapImpl) \
|
||||
F(folly::F14FastMap) \
|
||||
F(absl::flat_hash_map) \
|
||||
F(std::unordered_map) \
|
||||
F(std::map)
|
||||
|
||||
//BENCHMARK(BM_Get<VectorTable<td::uint64, td::uint64>>)->Range(1, 1 << 26);
|
||||
//BENCHMARK(BM_Get<SortedVectorTable<td::uint64, td::uint64>>)->Range(1, 1 << 26);
|
||||
//BENCHMARK(BM_Get<NoOpTable<td::uint64, td::uint64>>)->Range(1, 1 << 26);
|
||||
|
||||
#define REGISTER_GET_BENCHMARK(HT) BENCHMARK(BM_Get<HT<td::uint64, td::uint64>>)->Range(1, 1 << 23);
|
||||
|
||||
#define REGISTER_FIND_BENCHMARK(HT) \
|
||||
BENCHMARK(BM_find_same<HT<td::uint64, td::uint64>>) \
|
||||
->ComputeStatistics("max", [](const td::vector<double> &v) { return *std::max_element(v.begin(), v.end()); }) \
|
||||
->ComputeStatistics("min", [](const td::vector<double> &v) { return *std::min_element(v.begin(), v.end()); }) \
|
||||
->Repetitions(20) \
|
||||
->DisplayAggregatesOnly(true);
|
||||
|
||||
#define REGISTER_GET_BENCHMARK(HT) \
|
||||
BENCHMARK(BM_Get<HT<td::uint64, td::uint64>>)->Range(1, 1 << 23);
|
||||
#define REGISTER_EMPLACE_BENCHMARK(HT) BENCHMARK(BM_emplace_same<HT<td::uint64, td::uint64>>);
|
||||
|
||||
#define REGISTER_FIND_BENCHMARK(HT) \
|
||||
BENCHMARK(BM_find_same<HT<td::uint64, td::uint64>>)-> \
|
||||
ComputeStatistics("max", [](const std::vector<double>& v) -> double { \
|
||||
return *(std::max_element(std::begin(v), std::end(v))); \
|
||||
})-> \
|
||||
ComputeStatistics("min", [](const std::vector<double>& v) -> double { \
|
||||
return *(std::min_element(std::begin(v), std::end(v))); \
|
||||
})-> \
|
||||
Repetitions(20)->DisplayAggregatesOnly(true);
|
||||
|
||||
#define REGISTER_EMPLACE_BENCHMARK(HT) \
|
||||
BENCHMARK(BM_emplace_same<HT<td::uint64, td::uint64>>);
|
||||
|
||||
#define RUN_CREATE_BENCHMARK(HT) \
|
||||
bench_create<HT<td::uint64, td::uint64>>(#HT);
|
||||
#define RUN_CREATE_BENCHMARK(HT) benchmark_create<HT<td::uint64, td::uint64>>(#HT);
|
||||
|
||||
FOR_EACH_TABLE(REGISTER_FIND_BENCHMARK)
|
||||
FOR_EACH_TABLE(REGISTER_EMPLACE_BENCHMARK)
|
||||
FOR_EACH_TABLE(REGISTER_GET_BENCHMARK)
|
||||
|
||||
int main(int argc, char** argv) {
|
||||
int main(int argc, char **argv) {
|
||||
FOR_EACH_TABLE(RUN_CREATE_BENCHMARK);
|
||||
|
||||
benchmark::Initialize(&argc, argv);
|
||||
benchmark::RunSpecifiedBenchmarks();
|
||||
benchmark::Shutdown();
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user