Minor improvements.

This commit is contained in:
levlam 2022-02-10 11:55:32 +03:00
parent 2b1314295d
commit 9e6d106585
6 changed files with 51 additions and 48 deletions

View File

@ -68,6 +68,7 @@
#include <algorithm>
#include <limits>
#include <tuple>
#include <unordered_map>
#include <utility>
namespace td {

View File

@ -9,6 +9,7 @@
#include "td/db/SqliteDb.h"
#include "td/db/SqliteStatement.h"
#include "td/utils/common.h"
#include "td/utils/FlatHashMap.h"
#include "td/utils/Slice.h"
#include "td/utils/SliceBuilder.h"

View File

@ -451,7 +451,7 @@ class FlatHashMapImpl {
void erase_node(NodeIterator it) {
size_t empty_i = it - nodes_.begin();
auto empty_bucket = empty_i;
DCHECK(0 <= empty_i && empty_i < nodes_.size());
DCHECK(0 <= empty_i && empty_i < nodes_.size());
nodes_[empty_bucket].clear();
used_nodes_--;
@ -479,14 +479,8 @@ class FlatHashMapImpl {
}
};
template <class K, class V, class H, class FuncT>
void table_remove_if(FlatHashMapImpl<K, V, H> &table, FuncT &&func) {
table.remove_if(func);
}
template <class KeyT, class ValueT, class HashT = std::hash<KeyT>>
using FlatHashMap = FlatHashMapImpl<KeyT, ValueT, HashT>;
//using FlatHashMap = std::unordered_map<KeyT, ValueT, HashT>;
//using FlatHashMap = absl::flat_hash_map<KeyT, ValueT, HashT>;
} // namespace td

View File

@ -206,4 +206,12 @@ void table_remove_if(TableT &table, FuncT &&func) {
}
}
template <class KeyT, class ValueT, class HashT>
class FlatHashMapImpl;
template <class KeyT, class ValueT, class HashT, class FuncT>
void table_remove_if(FlatHashMapImpl<KeyT, ValueT, HashT> &table, FuncT &&func) {
table.remove_if(func);
}
} // namespace td

View File

@ -4,17 +4,21 @@
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "td/utils/algorithm.h"
#include "td/utils/common.h"
#include "td/utils/FlatHashMap.h"
#include "td/utils/Random.h"
#include "td/utils/Slice.h"
#include "td/utils/tests.h"
#include <algorithm>
#include <array>
#include "td/utils/Random.h"
#include "td/utils/algorithm.h"
#include <unordered_map>
#include <utility>
template <class T>
auto extract_kv(const T &reference) {
auto expected = td::transform(reference, [](auto &it) {return std::make_pair(it.first, it.second);});
static auto extract_kv(const T &reference) {
auto expected = td::transform(reference, [](auto &it) { return std::make_pair(it.first, it.second); });
std::sort(expected.begin(), expected.end());
return expected;
}
@ -42,7 +46,7 @@ TEST(FlatHashMap, basic) {
x.erase(x.find(12));
{
td::FlatHashMap<int, std::string> map = {{1, "hello"}, {2, "world"}};
td::FlatHashMap<int, td::string> map = {{1, "hello"}, {2, "world"}};
ASSERT_EQ("hello", map[1]);
ASSERT_EQ("world", map[2]);
ASSERT_EQ(2u, map.size());
@ -51,17 +55,15 @@ TEST(FlatHashMap, basic) {
}
{
td::FlatHashMap<int, std::string> map = {{1, "hello"}, {1, "world"}};
td::FlatHashMap<int, td::string> map = {{1, "hello"}, {1, "world"}};
ASSERT_EQ("world", map[1]);
ASSERT_EQ(1u, map.size());
}
using KV = td::FlatHashMapImpl<std::string, std::string>;
using Data = std::vector<std::pair<std::string, std::string>>;
using KV = td::FlatHashMapImpl<td::string, td::string>;
using Data = td::vector<std::pair<td::string, td::string>>;
auto data = Data{{"a", "b"}, {"c", "d"}};
{
ASSERT_EQ(Data{}, extract_kv(KV()));
}
{ ASSERT_EQ(Data{}, extract_kv(KV())); }
{
KV kv(data.begin(), data.end());
@ -137,29 +139,31 @@ TEST(FlatHashMap, remove_if_basic) {
}
ASSERT_EQ(extract_kv(reference), extract_kv(table));
std::vector<std::pair<td::uint64, td::uint64>> kv;
td::table_remove_if(table, [&](auto &it) {kv.emplace_back(it.first, it.second); return it.second % 2 == 0; });
td::vector<std::pair<td::uint64, td::uint64>> kv;
td::table_remove_if(table, [&](auto &it) {
kv.emplace_back(it.first, it.second);
return it.second % 2 == 0;
});
std::sort(kv.begin(), kv.end());
ASSERT_EQ(extract_kv(reference), kv);
td::table_remove_if(reference, [](auto &it) {return it.second % 2 == 0;});
td::table_remove_if(reference, [](auto &it) { return it.second % 2 == 0; });
ASSERT_EQ(extract_kv(reference), extract_kv(table));
}
}
TEST(FlatHashMap, stress_test) {
std::vector<td::RandomSteps::Step> steps;
td::vector<td::RandomSteps::Step> steps;
auto add_step = [&steps](td::Slice, td::uint32 weight, auto f) {
steps.emplace_back(td::RandomSteps::Step{std::move(f), weight});
};
td::Random::Xorshift128plus rnd(123);
size_t max_table_size = 1000; // dynamic value
size_t max_table_size = 1000; // dynamic value
std::unordered_map<td::uint64, td::uint64> ref;
td::FlatHashMapImpl<td::uint64, td::uint64> tbl;
auto validate = [&]() {
auto validate = [&] {
ASSERT_EQ(ref.empty(), tbl.empty());
ASSERT_EQ(ref.size(), tbl.size());
ASSERT_EQ(extract_kv(ref), extract_kv(tbl));
@ -167,25 +171,25 @@ TEST(FlatHashMap, stress_test) {
ASSERT_EQ(ref[kv.first], tbl[kv.first]);
}
};
auto gen_key = [&]() {
auto gen_key = [&] {
auto key = rnd() % 4000 + 1;
return key;
};
add_step("Reset hash table", 1, [&]() {
add_step("Reset hash table", 1, [&] {
validate();
td::reset_to_empty(ref);
td::reset_to_empty(tbl);
max_table_size = rnd.fast(1, 1000);
});
add_step("Clear hash table", 1, [&]() {
add_step("Clear hash table", 1, [&] {
validate();
ref.clear();
tbl.clear();
max_table_size = rnd.fast(1, 1000);
});
add_step("Insert random value", 1000, [&]() {
add_step("Insert random value", 1000, [&] {
if (tbl.size() > max_table_size) {
return;
}
@ -196,7 +200,7 @@ TEST(FlatHashMap, stress_test) {
ASSERT_EQ(ref[key], tbl[key]);
});
add_step("Emplace random value", 1000, [&]() {
add_step("Emplace random value", 1000, [&] {
if (tbl.size() > max_table_size) {
return;
}
@ -208,7 +212,7 @@ TEST(FlatHashMap, stress_test) {
ASSERT_EQ(key, tbl_it.first->first);
});
add_step("empty operator[]", 1000, [&]() {
add_step("empty operator[]", 1000, [&] {
if (tbl.size() > max_table_size) {
return;
}
@ -216,14 +220,12 @@ TEST(FlatHashMap, stress_test) {
ASSERT_EQ(ref[key], tbl[key]);
});
add_step("reserve", 10, [&]() {
tbl.reserve(rnd() % max_table_size);
});
add_step("reserve", 10, [&] { tbl.reserve(rnd() % max_table_size); });
add_step("find", 1000, [&] {
auto key = gen_key();
auto ref_it = ref.find(key) ;
auto tbl_it = tbl.find(key) ;
auto ref_it = ref.find(key);
auto tbl_it = tbl.find(key);
ASSERT_EQ(ref_it == ref.end(), tbl_it == tbl.end());
if (ref_it != ref.end()) {
ASSERT_EQ(ref_it->first, tbl_it->first);
@ -233,8 +235,8 @@ TEST(FlatHashMap, stress_test) {
add_step("find_and_erase", 100, [&] {
auto key = gen_key();
auto ref_it = ref.find(key) ;
auto tbl_it = tbl.find(key) ;
auto ref_it = ref.find(key);
auto tbl_it = tbl.find(key);
ASSERT_EQ(ref_it == ref.end(), tbl_it == tbl.end());
if (ref_it != ref.end()) {
ref.erase(ref_it);
@ -245,11 +247,11 @@ TEST(FlatHashMap, stress_test) {
add_step("remove_if", 5, [&] {
auto mul = rnd();
auto bit = rnd() % 64;
auto cnd = [&](auto &it) {
auto condition = [&](auto &it) {
return (((it.second * mul) >> bit) & 1) == 0;
};
td::table_remove_if(tbl, cnd);
td::table_remove_if(ref, cnd);
td::table_remove_if(tbl, condition);
td::table_remove_if(ref, condition);
});
td::RandomSteps runner(std::move(steps));

View File

@ -254,7 +254,7 @@ static void BM_emplace_same(benchmark::State &state) {
namespace td {
template <class K, class V, class FunctT>
void table_remove_if(absl::flat_hash_map<K, V> &table, FunctT &&func) {
static void table_remove_if(absl::flat_hash_map<K, V> &table, FunctT &&func) {
for (auto it = table.begin(); it != table.end();) {
if (func(*it)) {
auto copy = it;
@ -265,8 +265,7 @@ void table_remove_if(absl::flat_hash_map<K, V> &table, FunctT &&func) {
}
}
}
}
} // namespace td
template <typename TableT>
static void BM_remove_if(benchmark::State &state) {
@ -283,9 +282,7 @@ static void BM_remove_if(benchmark::State &state) {
}
state.ResumeTiming();
td::table_remove_if(table, [](auto &it) {
return it.second % 2 == 0;
});
td::table_remove_if(table, [](auto &it) { return it.second % 2 == 0; });
}
}
@ -353,7 +350,7 @@ FOR_EACH_TABLE(REGISTER_EMPLACE_BENCHMARK)
FOR_EACH_TABLE(REGISTER_GET_BENCHMARK)
int main(int argc, char **argv) {
// FOR_EACH_TABLE(RUN_CREATE_BENCHMARK);
// FOR_EACH_TABLE(RUN_CREATE_BENCHMARK);
benchmark::Initialize(&argc, argv);
benchmark::RunSpecifiedBenchmarks();