// // Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2018 // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #include "td/db/binlog/Binlog.h" #include "td/db/binlog/detail/BinlogEventsBuffer.h" #include "td/db/binlog/detail/BinlogEventsProcessor.h" #include "td/utils/buffer.h" #include "td/utils/format.h" #include "td/utils/logging.h" #include "td/utils/misc.h" #include "td/utils/port/Clocks.h" #include "td/utils/port/Fd.h" #include "td/utils/port/path.h" #include "td/utils/port/Stat.h" #include "td/utils/Random.h" #include "td/utils/ScopeGuard.h" #include "td/utils/Status.h" #include "td/utils/Time.h" #include "td/utils/tl_helpers.h" #include "td/utils/tl_parsers.h" namespace td { namespace detail { struct AesCtrEncryptionEvent { static constexpr size_t min_salt_size() { return 16; // 256 bits } static constexpr size_t default_salt_size() { return 32; // 256 bits } static constexpr size_t key_size() { return 32; // 256 bits } static constexpr size_t iv_size() { return 16; // 128 bits } static constexpr size_t hash_size() { return 32; // 256 bits } static constexpr size_t kdf_iteration_count() { return 60002; } static constexpr size_t kdf_fast_iteration_count() { return 2; } BufferSlice key_salt_; BufferSlice iv_; BufferSlice key_hash_; BufferSlice generate_key(const DbKey &db_key) { CHECK(!db_key.is_empty()); BufferSlice key(key_size()); size_t iteration_count = kdf_iteration_count(); if (db_key.is_raw_key()) { iteration_count = kdf_fast_iteration_count(); } pbkdf2_sha256(db_key.data(), key_salt_.as_slice(), narrow_cast(iteration_count), key.as_slice()); return key; } BufferSlice generate_hash(Slice key) { BufferSlice hash(hash_size()); hmac_sha256(key, "cucumbers everywhere", hash.as_slice()); return hash; } template void store(StorerT &storer) const { using td::store; BEGIN_STORE_FLAGS(); END_STORE_FLAGS(); store(key_salt_, storer); store(iv_, storer); store(key_hash_, storer); } template void parse(ParserT &&parser) { using td::parse; BEGIN_PARSE_FLAGS(); END_PARSE_FLAGS_GENERIC(); parse(key_salt_, parser); parse(iv_, parser); parse(key_hash_, parser); } }; class BinlogReader { public: BinlogReader() = default; explicit BinlogReader(ChainBufferReader *input) : input_(input) { } void set_input(ChainBufferReader *input) { input_ = input; } int64 offset() { return offset_; } Result read_next(BinlogEvent *event) { if (state_ == ReadLength) { if (input_->size() < 4) { return 4; } auto it = input_->clone(); char buf[4]; it.advance(4, MutableSlice(buf, 4)); size_ = static_cast(TlParser(Slice(buf, 4)).fetch_int()); if (size_ > MAX_EVENT_SIZE) { return Status::Error(PSLICE() << "Too big event " << tag("size", size_)); } if (size_ < MIN_EVENT_SIZE) { return Status::Error(PSLICE() << "Too small event " << tag("size", size_)); } state_ = ReadEvent; } if (input_->size() < size_) { return size_; } TRY_STATUS(event->init(input_->cut_head(size_).move_as_buffer_slice())); offset_ += size_; event->offset_ = offset_; state_ = ReadLength; return 0; } private: ChainBufferReader *input_; enum { ReadLength, ReadEvent } state_ = ReadLength; size_t size_{0}; int64 offset_{0}; }; } // namespace detail bool Binlog::IGNORE_ERASE_HACK = false; Binlog::Binlog() = default; Binlog::~Binlog() { close().ignore(); } Result Binlog::open_binlog(CSlice path, int32 flags) { TRY_RESULT(fd, FileFd::open(path, flags)); TRY_STATUS(fd.lock(FileFd::LockFlags::Write, 100)); return std::move(fd); } Status Binlog::init(string path, const Callback &callback, DbKey db_key, DbKey old_db_key, int32 dummy, const Callback &debug_callback) { close().ignore(); db_key_ = std::move(db_key); old_db_key_ = std::move(old_db_key); processor_ = std::make_unique(); // Turn off BinlogEventsBuffer // events_buffer_ = std::make_unique(); // try to restore binlog from regenerated version if (stat(path).is_error()) { rename(PSLICE() << path << ".new", path).ignore(); } info_ = BinlogInfo(); info_.was_created = stat(path).is_error(); TRY_RESULT(fd, open_binlog(path, FileFd::Flags::Read | FileFd::Flags::Write | FileFd::Flags::Create)); fd_ = BufferedFdBase(std::move(fd)); fd_size_ = 0; path_ = std::move(path); auto status = load_binlog(callback, debug_callback); if (status.is_error()) { close().ignore(); return status; } info_.last_id = processor_->last_id(); last_id_ = processor_->last_id(); if (info_.wrong_password) { close().ignore(); return Status::Error(Error::WrongPassword, "Wrong password"); } if ((!db_key_.is_empty() && !db_key_used_) || (db_key_.is_empty() && encryption_type_ != EncryptionType::None)) { aes_ctr_key_salt_ = BufferSlice(); do_reindex(); } info_.is_opened = true; return Status::OK(); } void Binlog::add_event(BinlogEvent &&event) { if (!events_buffer_) { do_add_event(std::move(event)); } else { events_buffer_->add_event(std::move(event)); } lazy_flush(); if (state_ == State::Run) { auto fd_size = fd_size_; if (events_buffer_) { fd_size += events_buffer_->size(); } auto need_reindex = [&](int64 min_size, int rate) { return fd_size > min_size && fd_size / rate > processor_->total_raw_events_size(); }; if (need_reindex(100000, 5) || need_reindex(500000, 2)) { LOG(INFO) << tag("fd_size", format::as_size(fd_size)) << tag("total events size", format::as_size(processor_->total_raw_events_size())); do_reindex(); } } } size_t Binlog::flush_events_buffer(bool force) { if (!events_buffer_) { return 0; } if (!force && !events_buffer_->need_flush()) { return events_buffer_->size(); } CHECK(!in_flush_events_buffer_); in_flush_events_buffer_ = true; events_buffer_->flush([&](BinlogEvent &&event) { this->do_add_event(std::move(event)); }); in_flush_events_buffer_ = false; return 0; } void Binlog::do_add_event(BinlogEvent &&event) { if (event.flags_ & BinlogEvent::Flags::Partial) { event.flags_ &= ~BinlogEvent::Flags::Partial; pending_events_.emplace_back(std::move(event)); } else { for (auto &pending_event : pending_events_) { do_event(std::move(pending_event)); } pending_events_.clear(); do_event(std::move(event)); } } Status Binlog::close(bool need_sync) { if (fd_.empty()) { return Status::OK(); } SCOPE_EXIT { path_ = ""; info_.is_opened = false; fd_.close(); need_sync_ = false; }; if (need_sync) { sync(); } else { flush(); } return Status::OK(); } void Binlog::change_key(DbKey new_db_key) { db_key_ = std::move(new_db_key); aes_ctr_key_salt_ = BufferSlice(); do_reindex(); } Status Binlog::close_and_destroy() { auto path = path_; auto close_status = close(false); destroy(path).ignore(); return close_status; } Status Binlog::destroy(Slice path) { unlink(PSLICE() << path).ignore(); unlink(PSLICE() << path << ".new").ignore(); return Status::OK(); } void Binlog::do_event(BinlogEvent &&event) { fd_events_++; fd_size_ += event.raw_event_.size(); if (state_ == State::Run || state_ == State::Reindex) { VLOG(binlog) << "Write binlog event: " << format::cond(state_ == State::Reindex, "[reindex] ") << event; switch (encryption_type_) { case EncryptionType::None: { buffer_writer_.append(event.raw_event_.clone()); break; } case EncryptionType::AesCtr: { buffer_writer_.append(event.raw_event_.as_slice()); break; } } } if (event.type_ < 0) { if (event.type_ == BinlogEvent::ServiceTypes::AesCtrEncryption) { detail::AesCtrEncryptionEvent encryption_event; encryption_event.parse(TlParser(event.data_)); BufferSlice key; if (aes_ctr_key_salt_.as_slice() == encryption_event.key_salt_.as_slice()) { key = BufferSlice(Slice(aes_ctr_key_.raw, sizeof(aes_ctr_key_.raw))); } else if (!db_key_.is_empty()) { key = encryption_event.generate_key(db_key_); } if (encryption_event.generate_hash(key.as_slice()).as_slice() != encryption_event.key_hash_.as_slice()) { CHECK(state_ == State::Load); if (!old_db_key_.is_empty()) { key = encryption_event.generate_key(old_db_key_); if (encryption_event.generate_hash(key.as_slice()).as_slice() != encryption_event.key_hash_.as_slice()) { info_.wrong_password = true; } } else { info_.wrong_password = true; } } else { db_key_used_ = true; } encryption_type_ = EncryptionType::AesCtr; aes_ctr_key_salt_ = encryption_event.key_salt_.copy(); update_encryption(key.as_slice(), encryption_event.iv_.as_slice()); if (state_ == State::Load) { update_read_encryption(); LOG(INFO) << "Load: init encryption"; } else { CHECK(state_ == State::Reindex); flush(); update_write_encryption(); //LOG(INFO) << format::cond(state_ == State::Run, "Run", "Reindex") << ": init encryption"; } return; } } if (state_ != State::Reindex) { processor_->add_event(std::move(event)); } } void Binlog::sync() { flush(); if (need_sync_) { auto status = fd_.sync(); LOG_IF(FATAL, status.is_error()) << "Failed to sync binlog: " << status; need_sync_ = false; } } void Binlog::flush() { if (state_ == State::Load) { return; } flush_events_buffer(true); // NB: encryption happens during flush if (byte_flow_flag_) { byte_flow_source_.wakeup(); } auto r_written = fd_.flush_write(); r_written.ensure(); auto written = r_written.ok(); if (written > 0) { need_sync_ = true; } need_flush_since_ = 0; LOG_IF(FATAL, fd_.need_flush_write()) << "Failed to flush binlog"; } void Binlog::lazy_flush() { size_t events_buffer_size = flush_events_buffer(false /*force*/); buffer_reader_.sync_with_writer(); auto size = buffer_reader_.size() + events_buffer_size; if (size > (1 << 14)) { flush(); } else if (size > 0 && need_flush_since_ == 0) { need_flush_since_ = Time::now_cached(); } } void Binlog::update_read_encryption() { CHECK(binlog_reader_ptr_); switch (encryption_type_) { case EncryptionType::None: { binlog_reader_ptr_->set_input(&buffer_reader_); byte_flow_flag_ = false; break; } case EncryptionType::AesCtr: { byte_flow_source_ = ByteFlowSource(&buffer_reader_); aes_xcode_byte_flow_ = AesCtrByteFlow(); aes_xcode_byte_flow_.init(std::move(aes_ctr_state_)); byte_flow_sink_ = ByteFlowSink(); byte_flow_source_ >> aes_xcode_byte_flow_ >> byte_flow_sink_; byte_flow_flag_ = true; binlog_reader_ptr_->set_input(byte_flow_sink_.get_output()); break; } } } void Binlog::update_write_encryption() { switch (encryption_type_) { case EncryptionType::None: { fd_.set_output_reader(&buffer_reader_); byte_flow_flag_ = false; break; } case EncryptionType::AesCtr: { byte_flow_source_ = ByteFlowSource(&buffer_reader_); aes_xcode_byte_flow_ = AesCtrByteFlow(); aes_xcode_byte_flow_.init(std::move(aes_ctr_state_)); byte_flow_sink_ = ByteFlowSink(); byte_flow_source_ >> aes_xcode_byte_flow_ >> byte_flow_sink_; byte_flow_flag_ = true; fd_.set_output_reader(byte_flow_sink_.get_output()); break; } } } Status Binlog::load_binlog(const Callback &callback, const Callback &debug_callback) { state_ = State::Load; buffer_writer_ = ChainBufferWriter(); buffer_reader_ = buffer_writer_.extract_reader(); fd_.set_input_writer(&buffer_writer_); detail::BinlogReader reader; binlog_reader_ptr_ = &reader; update_read_encryption(); bool ready_flag = false; fd_.update_flags(Fd::Flag::Read); info_.wrong_password = false; while (true) { BinlogEvent event; auto r_need_size = reader.read_next(&event); if (r_need_size.is_error()) { LOG(ERROR) << r_need_size.error(); break; } auto need_size = r_need_size.move_as_ok(); // LOG(ERROR) << "need size = " << need_size; if (need_size == 0) { if (IGNORE_ERASE_HACK && event.type_ == BinlogEvent::ServiceTypes::Empty && (event.flags_ & BinlogEvent::Flags::Rewrite) != 0) { // skip erase } else { if (debug_callback) { debug_callback(event); } do_add_event(std::move(event)); if (info_.wrong_password) { return Status::OK(); } } ready_flag = false; } else { // TODO(now): fix bug if (ready_flag) { break; } TRY_STATUS(fd_.flush_read(max(need_size, static_cast(4096)))); buffer_reader_.sync_with_writer(); if (byte_flow_flag_) { byte_flow_source_.wakeup(); } ready_flag = true; } } auto offset = processor_->offset(); processor_->for_each([&](BinlogEvent &event) { VLOG(binlog) << "Replay binlog event: " << event; if (callback) { callback(event); } }); auto fd_size = fd_.get_size(); if (offset != fd_size) { LOG(ERROR) << "Truncate " << tag("path", path_) << tag("old_size", fd_size) << tag("new_size", offset); fd_.seek(offset).ensure(); fd_.truncate_to_current_position(offset).ensure(); db_key_used_ = false; // force reindex } CHECK(IGNORE_ERASE_HACK || fd_size_ == offset) << fd_size << " " << fd_size_ << " " << offset; binlog_reader_ptr_ = nullptr; state_ = State::Run; buffer_writer_ = ChainBufferWriter(); buffer_reader_ = buffer_writer_.extract_reader(); // reuse aes_ctr_state_ if (encryption_type_ == EncryptionType::AesCtr) { aes_ctr_state_ = aes_xcode_byte_flow_.move_aes_ctr_state(); } update_write_encryption(); return Status::OK(); } static int64 file_size(CSlice path) { auto r_stat = stat(path); if (r_stat.is_error()) { return 0; } return r_stat.ok().size_; } void Binlog::update_encryption(Slice key, Slice iv) { MutableSlice(aes_ctr_key_.raw, sizeof(aes_ctr_key_.raw)).copy_from(key); UInt128 aes_ctr_iv; MutableSlice(aes_ctr_iv.raw, sizeof(aes_ctr_iv.raw)).copy_from(iv); aes_ctr_state_.init(aes_ctr_key_, aes_ctr_iv); } void Binlog::reset_encryption() { if (db_key_.is_empty()) { encryption_type_ = EncryptionType::None; return; } using EncryptionEvent = detail::AesCtrEncryptionEvent; EncryptionEvent event; if (aes_ctr_key_salt_.empty()) { event.key_salt_ = BufferSlice(EncryptionEvent::default_salt_size()); Random::secure_bytes(event.key_salt_.as_slice()); } else { event.key_salt_ = aes_ctr_key_salt_.clone(); } event.iv_ = BufferSlice(EncryptionEvent::iv_size()); Random::secure_bytes(event.iv_.as_slice()); BufferSlice key; if (aes_ctr_key_salt_.as_slice() == event.key_salt_.as_slice()) { key = BufferSlice(Slice(aes_ctr_key_.raw, sizeof(aes_ctr_key_.raw))); } else { key = event.generate_key(db_key_); } event.key_hash_ = event.generate_hash(key.as_slice()); do_event(BinlogEvent( BinlogEvent::create_raw(0, BinlogEvent::ServiceTypes::AesCtrEncryption, 0, create_default_storer(event)))); } void Binlog::do_reindex() { flush_events_buffer(true); // start reindex CHECK(state_ == State::Run); state_ = State::Reindex; SCOPE_EXIT { state_ = State::Run; }; auto start_time = Clocks::monotonic(); auto start_size = file_size(path_); auto start_events = fd_events_; string new_path = path_ + ".new"; auto r_opened_file = open_binlog(new_path, FileFd::Flags::Write | FileFd::Flags::Create | FileFd::Truncate); if (r_opened_file.is_error()) { LOG(ERROR) << "Can't open new binlog for regenerate: " << r_opened_file.error(); return; } fd_.close(); fd_ = BufferedFdBase(r_opened_file.move_as_ok()); buffer_writer_ = ChainBufferWriter(); buffer_reader_ = buffer_writer_.extract_reader(); encryption_type_ = EncryptionType::None; update_write_encryption(); // reindex fd_size_ = 0; fd_events_ = 0; reset_encryption(); processor_->for_each([&](BinlogEvent &event) { do_event(std::move(event)); // NB: no move is actually happens }); need_sync_ = true; // must sync creation of the file sync(); // finish_reindex auto status = unlink(path_); LOG_IF(FATAL, status.is_error()) << "Failed to unlink old binlog: " << status; status = rename(new_path, path_); LOG_IF(FATAL, status.is_error()) << "Failed to rename binlog: " << status; auto finish_time = Clocks::monotonic(); auto finish_size = fd_size_; auto finish_events = fd_events_; CHECK(fd_size_ == file_size(path_)); // TODO: print warning only if time or ratio is suspicious double ratio = static_cast(start_size) / static_cast(finish_size + 1); LOG(INFO) << "regenerate index " << tag("name", path_) << tag("time", format::as_time(finish_time - start_time)) << tag("before_size", format::as_size(start_size)) << tag("after_size", format::as_size(finish_size)) << tag("ratio", ratio) << tag("before_events", start_events) << tag("after_events", finish_events); buffer_writer_ = ChainBufferWriter(); buffer_reader_ = buffer_writer_.extract_reader(); // reuse aes_ctr_state_ if (encryption_type_ == EncryptionType::AesCtr) { aes_ctr_state_ = aes_xcode_byte_flow_.move_aes_ctr_state(); } update_write_encryption(); } } // namespace td