// // Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2024 // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #pragma once /** * \file * Contains the declarations of a base class for all TL-objects and some helper methods */ #include <cstddef> #include <cstdint> #include <string> #include <type_traits> #include <utility> namespace td { class TlStorerCalcLength; class TlStorerUnsafe; class TlStorerToString; /** * This class is a base class for all TDLib TL-objects. */ class TlObject { public: /** * Returns an identifier, uniquely determining the TL-type of the object. */ virtual std::int32_t get_id() const = 0; /** * Appends the object to the storer serializing object, a buffer of fixed length. * \param[in] s Storer to which the object will be appended. */ virtual void store(TlStorerUnsafe &s) const { } /** * Appends the object to the storer, calculating the TL-length of the serialized object. * \param[in] s Storer to which the object will be appended. */ virtual void store(TlStorerCalcLength &s) const { } /** * Helper function for the to_string method. Appends a string representation of the object to the storer. * \param[in] s Storer to which the object string representation will be appended. * \param[in] field_name Object field_name if applicable. */ virtual void store(TlStorerToString &s, const char *field_name) const = 0; /** * Default constructor. */ TlObject() = default; /** * Deleted copy constructor. */ TlObject(const TlObject &) = delete; /** * Deleted copy assignment operator. */ TlObject &operator=(const TlObject &) = delete; /** * Default move constructor. */ TlObject(TlObject &&) = default; /** * Default move assignment operator. */ TlObject &operator=(TlObject &&) = default; /** * Virtual destructor. */ virtual ~TlObject() = default; }; /// @cond UNDOCUMENTED namespace tl { template <class T> class unique_ptr { public: using pointer = T *; using element_type = T; unique_ptr() noexcept = default; unique_ptr(const unique_ptr &) = delete; unique_ptr &operator=(const unique_ptr &) = delete; unique_ptr(unique_ptr &&other) noexcept : ptr_(other.release()) { } unique_ptr &operator=(unique_ptr &&other) noexcept { reset(other.release()); return *this; } ~unique_ptr() { reset(); } unique_ptr(std::nullptr_t) noexcept { } explicit unique_ptr(T *ptr) noexcept : ptr_(ptr) { } template <class S, class = typename std::enable_if<std::is_base_of<T, S>::value>::type> unique_ptr(unique_ptr<S> &&other) noexcept : ptr_(static_cast<S *>(other.release())) { } template <class S, class = typename std::enable_if<std::is_base_of<T, S>::value>::type> unique_ptr &operator=(unique_ptr<S> &&other) noexcept { reset(static_cast<T *>(other.release())); return *this; } void reset(T *new_ptr = nullptr) noexcept { static_assert(sizeof(T) > 0, "Can't destroy unique_ptr with incomplete type"); delete ptr_; ptr_ = new_ptr; } T *release() noexcept { auto res = ptr_; ptr_ = nullptr; return res; } T *get() noexcept { return ptr_; } const T *get() const noexcept { return ptr_; } T *operator->() noexcept { return ptr_; } const T *operator->() const noexcept { return ptr_; } T &operator*() noexcept { return *ptr_; } const T &operator*() const noexcept { return *ptr_; } explicit operator bool() const noexcept { return ptr_ != nullptr; } private: T *ptr_{nullptr}; }; template <class T> bool operator==(std::nullptr_t, const unique_ptr<T> &p) { return !p; } template <class T> bool operator==(const unique_ptr<T> &p, std::nullptr_t) { return !p; } template <class T> bool operator!=(std::nullptr_t, const unique_ptr<T> &p) { return static_cast<bool>(p); } template <class T> bool operator!=(const unique_ptr<T> &p, std::nullptr_t) { return static_cast<bool>(p); } } // namespace tl /// @endcond /** * A smart wrapper to store a pointer to a TL-object. */ template <class Type> using tl_object_ptr = tl::unique_ptr<Type>; /** * A function to create a dynamically allocated TL-object. Can be treated as an analogue of std::make_unique. * Usage example: * \code * auto get_me_request = td::make_tl_object<td::td_api::getMe>(); * auto message_text = td::make_tl_object<td::td_api::formattedText>("Hello, world!!!", * td::td_api::array<td::tl_object_ptr<td::td_api::textEntity>>()); * auto send_message_request = td::make_tl_object<td::td_api::sendMessage>(chat_id, 0, nullptr, nullptr, nullptr, * td::make_tl_object<td::td_api::inputMessageText>(std::move(message_text), nullptr, true)); * \endcode * * \tparam Type Type of the TL-object to construct. * \param[in] args Arguments to pass to the object constructor. * \return Wrapped pointer to the created TL-object. */ template <class Type, class... Args> tl_object_ptr<Type> make_tl_object(Args &&...args) { return tl_object_ptr<Type>(new Type(std::forward<Args>(args)...)); } /** * A function to downcast a wrapped pointer to a TL-object to a pointer to its subclass. * Casting an object to an incorrect type will lead to undefined behaviour. * Examples of usage: * \code * td::tl_object_ptr<td::td_api::callState> call_state = ...; * switch (call_state->get_id()) { * case td::td_api::callStatePending::ID: { * auto state = td::move_tl_object_as<td::td_api::callStatePending>(call_state); * // use state * break; * } * case td::td_api::callStateExchangingKeys::ID: { * // no additional fields, so cast isn't needed * break; * } * case td::td_api::callStateReady::ID: { * auto state = td::move_tl_object_as<td::td_api::callStateReady>(call_state); * // use state * break; * } * case td::td_api::callStateHangingUp::ID: { * // no additional fields, so cast isn't needed * break; * } * case td::td_api::callStateDiscarded::ID: { * auto state = td::move_tl_object_as<td::td_api::callStateDiscarded>(call_state); * // use state * break; * } * case td::td_api::callStateError::ID: { * auto state = td::move_tl_object_as<td::td_api::callStateError>(call_state); * // use state * break; * } * default: * assert(false); * } * \endcode * * \tparam ToT Type of TL-object to move to. * \tparam FromT Type of TL-object to move from, this is auto-deduced. * \param[in] from Wrapped pointer to a TL-object. */ template <class ToT, class FromT> tl_object_ptr<ToT> move_tl_object_as(tl_object_ptr<FromT> &from) { return tl_object_ptr<ToT>(static_cast<ToT *>(from.release())); } /** * \overload */ template <class ToT, class FromT> tl_object_ptr<ToT> move_tl_object_as(tl_object_ptr<FromT> &&from) { return tl_object_ptr<ToT>(static_cast<ToT *>(from.release())); } } // namespace td