// // Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2022 // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #pragma once #include "td/utils/bits.h" #include "td/utils/common.h" #include #include #include #include #include #include #include namespace td { template class fixed_vector { public: fixed_vector() = default; explicit fixed_vector(size_t size) : ptr_(new T[size]), size_(size) { } fixed_vector(fixed_vector &&other) noexcept { swap(other); } fixed_vector &operator=(fixed_vector &&other) noexcept { swap(other); return *this; } fixed_vector(const fixed_vector &) = delete; fixed_vector &operator=(const fixed_vector &) = delete; ~fixed_vector() { delete[] ptr_; } T &operator[](size_t i) { return ptr_[i]; } const T &operator[](size_t i) const { return ptr_[i]; } T *begin() { return ptr_; } const T *begin() const { return ptr_; } T *end() { return ptr_ + size_; } const T *end() const { return ptr_ + size_; } size_t size() const { return size_; } using iterator = T *; using const_iterator = const T *; void swap(fixed_vector &other) { std::swap(ptr_, other.ptr_); std::swap(size_, other.size_); } private: T *ptr_{}; size_t size_{0}; }; template > class FlatHashMapImpl { public: struct Node { using first_type = KeyT; using second_type = ValueT; KeyT first{}; union { ValueT second; }; const auto &key() const { return first; } auto &value() { return second; } Node() { } Node(KeyT key, ValueT value) : first(std::move(key)) { new (&second) ValueT(std::move(value)); DCHECK(!empty()); } ~Node() { if (!empty()) { second.~ValueT(); } } Node(Node &&other) noexcept { *this = std::move(other); } Node &operator=(Node &&other) noexcept { DCHECK(empty()); DCHECK(!other.empty()); first = std::move(other.first); other.first = KeyT{}; new (&second) ValueT(std::move(other.second)); other.second.~ValueT(); return *this; } bool empty() const { return is_key_empty(key()); } void clear() { DCHECK(!empty()); first = KeyT(); second.~ValueT(); DCHECK(empty()); } template void emplace(KeyT key, ArgsT &&...args) { DCHECK(empty()); first = std::move(key); new (&second) ValueT(std::forward(args)...); DCHECK(!empty()); } }; using Self = FlatHashMapImpl; using NodeIterator = typename fixed_vector::iterator; using ConstNodeIterator = typename fixed_vector::const_iterator; using key_type = KeyT; using value_type = Node; struct Iterator { using iterator_category = std::bidirectional_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = Node; using pointer = Node *; using reference = Node &; friend class FlatHashMapImpl; Iterator &operator++() { do { ++it_; } while (it_ != map_->nodes_.end() && it_->empty()); return *this; } Iterator &operator--() { do { --it_; } while (it_->empty()); return *this; } Node &operator*() { return *it_; } Node *operator->() { return &*it_; } bool operator==(const Iterator &other) const { DCHECK(map_ == other.map_); return it_ == other.it_; } bool operator!=(const Iterator &other) const { DCHECK(map_ == other.map_); return it_ != other.it_; } Iterator(NodeIterator it, Self *map) : it_(std::move(it)), map_(map) { } private: NodeIterator it_; Self *map_; }; struct ConstIterator { using iterator_category = std::bidirectional_iterator_tag; using difference_type = std::ptrdiff_t; using value_type = Node; using pointer = const Node *; using reference = const Node &; friend class FlatHashMapImpl; ConstIterator &operator++() { ++it_; return *this; } ConstIterator &operator--() { --it_; return *this; } const Node &operator*() { return *it_; } const Node *operator->() { return &*it_; } bool operator==(const ConstIterator &other) const { return it_ == other.it_; } bool operator!=(const ConstIterator &other) const { return it_ != other.it_; } explicit ConstIterator(Iterator it) : it_(std::move(it)) { } private: Iterator it_; }; FlatHashMapImpl() = default; FlatHashMapImpl(const FlatHashMapImpl &other) : FlatHashMapImpl(other.begin(), other.end()) { } FlatHashMapImpl &operator=(const FlatHashMapImpl &other) { assign(other.begin(), other.end()); return *this; } FlatHashMapImpl(std::initializer_list nodes) { reserve(nodes.size()); for (auto &node : nodes) { CHECK(!is_key_empty(node.first)); auto bucket = calc_bucket(node.first); while (true) { if (nodes_[bucket].key() == node.first) { nodes_[bucket].second = node.second; break; } if (nodes_[bucket].empty()) { nodes_[bucket].emplace(node.first, node.second); used_nodes_++; break; } next_bucket(bucket); } } } FlatHashMapImpl(FlatHashMapImpl &&other) noexcept : nodes_(std::move(other.nodes_)), used_nodes_(other.used_nodes_) { other.used_nodes_ = 0; } FlatHashMapImpl &operator=(FlatHashMapImpl &&other) noexcept { nodes_ = std::move(other.nodes_); used_nodes_ = other.used_nodes_; other.used_nodes_ = 0; return *this; } ~FlatHashMapImpl() = default; template FlatHashMapImpl(ItT begin, ItT end) { assign(begin, end); } Iterator find(const KeyT &key) { if (empty() || is_key_empty(key)) { return end(); } auto bucket = calc_bucket(key); while (true) { if (nodes_[bucket].key() == key) { return Iterator{nodes_.begin() + bucket, this}; } if (nodes_[bucket].empty()) { return end(); } next_bucket(bucket); } } ConstIterator find(const KeyT &key) const { return ConstIterator(const_cast(this)->find(key)); } size_t size() const { return used_nodes_; } bool empty() const { return size() == 0; } Iterator begin() { if (empty()) { return end(); } auto it = nodes_.begin(); while (it->empty()) { ++it; } return Iterator(it, this); } Iterator end() { return Iterator(nodes_.end(), this); } ConstIterator begin() const { return ConstIterator(const_cast(this)->begin()); } ConstIterator end() const { return ConstIterator(const_cast(this)->end()); } void reserve(size_t size) { size_t want_size = normalize(size * 5 / 3 + 1); // size_t want_size = size * 2; if (want_size > nodes_.size()) { resize(want_size); } } template std::pair emplace(KeyT key, ArgsT &&...args) { try_grow(); CHECK(!is_key_empty(key)); auto bucket = calc_bucket(key); while (true) { if (nodes_[bucket].key() == key) { return {Iterator{nodes_.begin() + bucket, this}, false}; } if (nodes_[bucket].empty()) { nodes_[bucket].emplace(std::move(key), std::forward(args)...); used_nodes_++; return {Iterator{nodes_.begin() + bucket, this}, true}; } next_bucket(bucket); } } ValueT &operator[](const KeyT &key) { return emplace(key).first->second; } size_t erase(const KeyT &key) { auto it = find(key); if (it == end()) { return 0; } erase(it); try_shrink(); return 1; } size_t count(const KeyT &key) const { return find(key) != end(); } void clear() { used_nodes_ = 0; nodes_ = {}; } void erase(Iterator it) { DCHECK(it != end()); DCHECK(!is_key_empty(it->key())); erase_node(it.it_); } template void remove_if(F &&f) { auto it = nodes_.begin(); while (it != nodes_.end() && !it->empty()) { ++it; } auto first_empty = it; for (; it != nodes_.end();) { if (!it->empty() && f(*it)) { erase_node(it); } else { ++it; } } for (it = nodes_.begin(); it != first_empty;) { if (!it->empty() && f(*it)) { erase_node(it); } else { ++it; } } try_shrink(); } private: static bool is_key_empty(const KeyT &key) { return key == KeyT(); } fixed_vector nodes_; size_t used_nodes_{}; template void assign(ItT begin, ItT end) { resize(std::distance(begin, end)); // TODO: should be conditional for (; begin != end; ++begin) { emplace(begin->first, begin->second); } } void try_grow() { if (should_grow(used_nodes_ + 1, nodes_.size())) { grow(); } } static bool should_grow(size_t used_count, size_t bucket_count) { return used_count * 5 > bucket_count * 3; } void try_shrink() { if (should_shrink(used_nodes_, nodes_.size())) { shrink(); } } static bool should_shrink(size_t used_count, size_t bucket_count) { return used_count * 10 < bucket_count; } static size_t normalize(size_t size) { return static_cast(1) << (64 - count_leading_zeroes64(size | 7)); } void shrink() { size_t want_size = normalize((used_nodes_ + 1) * 5 / 3 + 1); resize(want_size); } void grow() { size_t want_size = normalize(2 * nodes_.size() - 1); resize(want_size); } size_t calc_bucket(const KeyT &key) const { return HashT()(key) * 2 % nodes_.size(); } void resize(size_t new_size) { fixed_vector old_nodes(new_size); std::swap(old_nodes, nodes_); for (auto &node : old_nodes) { if (node.empty()) { continue; } size_t bucket = calc_bucket(node.key()); while (!nodes_[bucket].empty()) { next_bucket(bucket); } nodes_[bucket] = std::move(node); } } void next_bucket(size_t &bucket) const { bucket++; if (bucket == nodes_.size()) { bucket = 0; } } void erase_node(NodeIterator it) { size_t empty_i = it - nodes_.begin(); auto empty_bucket = empty_i; DCHECK(0 <= empty_i && empty_i < nodes_.size()); nodes_[empty_bucket].clear(); used_nodes_--; for (size_t test_i = empty_i + 1;; test_i++) { auto test_bucket = test_i; if (test_bucket >= nodes_.size()) { test_bucket -= nodes_.size(); } if (nodes_[test_bucket].empty()) { break; } auto want_i = calc_bucket(nodes_[test_bucket].key()); if (want_i < empty_i) { want_i += nodes_.size(); } if (want_i <= empty_i || want_i > test_i) { nodes_[empty_bucket] = std::move(nodes_[test_bucket]); empty_i = test_i; empty_bucket = test_bucket; } } } }; template > using FlatHashMap = FlatHashMapImpl; //using FlatHashMap = std::unordered_map; } // namespace td