tdlight/tdutils/td/utils/port/Stat.cpp

408 lines
11 KiB
C++

//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2021
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "td/utils/port/Stat.h"
#include "td/utils/port/FileFd.h"
#if TD_PORT_POSIX
#include "td/utils/format.h"
#include "td/utils/logging.h"
#include "td/utils/misc.h"
#include "td/utils/port/Clocks.h"
#include "td/utils/port/detail/skip_eintr.h"
#include "td/utils/ScopeGuard.h"
#include "td/utils/SliceBuilder.h"
#include <utility>
#if TD_DARWIN
#include <mach/mach.h>
#include <sys/time.h>
#endif
// We don't want warnings from system headers
#if TD_GCC
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wconversion"
#endif
#include <sys/stat.h>
#if TD_GCC
#pragma GCC diagnostic pop
#endif
#if TD_ANDROID || TD_TIZEN
#include <sys/syscall.h>
#endif
#elif TD_PORT_WINDOWS
#include "td/utils/port/thread.h"
#ifndef PSAPI_VERSION
#define PSAPI_VERSION 1
#endif
#ifdef __MINGW32__
#include <psapi.h>
#else
#include <Psapi.h>
#endif
#endif
namespace td {
#if TD_PORT_POSIX
namespace detail {
template <class...>
struct voider {
using type = void;
};
template <class... T>
using void_t = typename voider<T...>::type;
template <class T, class = void>
struct TimeNsec {
static std::pair<int, int> get(const T &) {
T().warning("Platform lacks support of precise access/modification file times, comment this line to continue");
return {0, 0};
}
};
// remove libc compatibility hacks if any: we have our own hacks
#ifdef st_atimespec
#undef st_atimespec
#endif
#ifdef st_atimensec
#undef st_atimensec
#endif
#ifdef st_atime_nsec
#undef st_atime_nsec
#endif
template <class T>
struct TimeNsec<T, void_t<char, decltype(T::st_atimespec), decltype(T::st_mtimespec)>> {
static std::pair<decltype(decltype(T::st_atimespec)::tv_nsec), decltype(decltype(T::st_mtimespec)::tv_nsec)> get(
const T &s) {
return {s.st_atimespec.tv_nsec, s.st_mtimespec.tv_nsec};
}
};
template <class T>
struct TimeNsec<T, void_t<short, decltype(T::st_atimensec), decltype(T::st_mtimensec)>> {
static std::pair<decltype(T::st_atimensec), decltype(T::st_mtimensec)> get(const T &s) {
return {s.st_atimensec, s.st_mtimensec};
}
};
template <class T>
struct TimeNsec<T, void_t<int, decltype(T::st_atim), decltype(T::st_mtim)>> {
static std::pair<decltype(decltype(T::st_atim)::tv_nsec), decltype(decltype(T::st_mtim)::tv_nsec)> get(const T &s) {
return {s.st_atim.tv_nsec, s.st_mtim.tv_nsec};
}
};
template <class T>
struct TimeNsec<T, void_t<long, decltype(T::st_atime_nsec), decltype(T::st_mtime_nsec)>> {
static std::pair<decltype(T::st_atime_nsec), decltype(T::st_mtime_nsec)> get(const T &s) {
return {s.st_atime_nsec, s.st_mtime_nsec};
}
};
Stat from_native_stat(const struct ::stat &buf) {
auto time_nsec = TimeNsec<struct ::stat>::get(buf);
Stat res;
res.atime_nsec_ = static_cast<uint64>(buf.st_atime) * 1000000000 + time_nsec.first;
res.mtime_nsec_ = static_cast<uint64>(buf.st_mtime) * 1000000000 + time_nsec.second / 1000 * 1000;
res.size_ = buf.st_size;
res.real_size_ = buf.st_blocks * 512;
res.is_dir_ = (buf.st_mode & S_IFMT) == S_IFDIR;
res.is_reg_ = (buf.st_mode & S_IFMT) == S_IFREG;
return res;
}
Result<Stat> fstat(int native_fd) {
struct ::stat buf;
if (detail::skip_eintr([&] { return ::fstat(native_fd, &buf); }) < 0) {
return OS_ERROR(PSLICE() << "Stat for fd " << native_fd << " failed");
}
return detail::from_native_stat(buf);
}
Status update_atime(int native_fd) {
#if TD_LINUX
timespec times[2];
// access time
times[0].tv_nsec = UTIME_NOW;
times[0].tv_sec = 0;
// modify time
times[1].tv_nsec = UTIME_OMIT;
times[1].tv_sec = 0;
if (futimens(native_fd, times) < 0) {
auto status = OS_ERROR(PSLICE() << "futimens " << tag("fd", native_fd));
LOG(WARNING) << status;
return status;
}
return Status::OK();
#elif TD_DARWIN
TRY_RESULT(info, fstat(native_fd));
timeval upd[2];
auto now = Clocks::system();
// access time
upd[0].tv_sec = static_cast<decltype(upd[0].tv_sec)>(now);
upd[0].tv_usec = static_cast<decltype(upd[0].tv_usec)>((now - static_cast<double>(upd[0].tv_sec)) * 1000000);
// modify time
upd[1].tv_sec = static_cast<decltype(upd[1].tv_sec)>(info.mtime_nsec_ / 1000000000ll);
upd[1].tv_usec = static_cast<decltype(upd[1].tv_usec)>(info.mtime_nsec_ % 1000000000ll / 1000);
if (futimes(native_fd, upd) < 0) {
auto status = OS_ERROR(PSLICE() << "futimes " << tag("fd", native_fd));
LOG(WARNING) << status;
return status;
}
return Status::OK();
#else
return Status::Error("Not supported");
// timespec times[2];
//// access time
// times[0].tv_nsec = UTIME_NOW;
//// modify time
// times[1].tv_nsec = UTIME_OMIT;
//// int err = syscall(__NR_utimensat, native_fd, nullptr, times, 0);
// if (futimens(native_fd, times) < 0) {
// auto status = OS_ERROR(PSLICE() << "futimens " << tag("fd", native_fd));
// LOG(WARNING) << status;
// return status;
// }
// return Status::OK();
#endif
}
} // namespace detail
Status update_atime(CSlice path) {
TRY_RESULT(file, FileFd::open(path, FileFd::Flags::Read));
SCOPE_EXIT {
file.close();
};
return detail::update_atime(file.get_native_fd().fd());
}
#endif
Result<Stat> stat(CSlice path) {
#if TD_PORT_POSIX
struct ::stat buf;
int err = detail::skip_eintr([&] { return ::stat(path.c_str(), &buf); });
if (err < 0) {
return OS_ERROR(PSLICE() << "Stat for file \"" << path << "\" failed");
}
return detail::from_native_stat(buf);
#elif TD_PORT_WINDOWS
TRY_RESULT(fd, FileFd::open(path, FileFd::Flags::Read | FileFd::PrivateFlags::WinStat));
return fd.stat();
#endif
}
Result<MemStat> mem_stat() {
#if TD_DARWIN
task_basic_info t_info;
mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT;
if (KERN_SUCCESS !=
task_info(mach_task_self(), TASK_BASIC_INFO, reinterpret_cast<task_info_t>(&t_info), &t_info_count)) {
return Status::Error("Call to task_info failed");
}
MemStat res;
res.resident_size_ = t_info.resident_size;
res.virtual_size_ = t_info.virtual_size;
res.resident_size_peak_ = 0;
res.virtual_size_peak_ = 0;
return res;
#elif TD_LINUX || TD_ANDROID || TD_TIZEN
TRY_RESULT(fd, FileFd::open("/proc/self/status", FileFd::Read));
SCOPE_EXIT {
fd.close();
};
constexpr int TMEM_SIZE = 10000;
char mem[TMEM_SIZE];
TRY_RESULT(size, fd.read(MutableSlice(mem, TMEM_SIZE - 1)));
CHECK(size < TMEM_SIZE - 1);
mem[size] = 0;
const char *s = mem;
MemStat res;
while (*s) {
const char *name_begin = s;
while (*s != 0 && *s != '\n') {
s++;
}
auto name_end = name_begin;
while (is_alpha(*name_end)) {
name_end++;
}
Slice name(name_begin, name_end);
uint64 *x = nullptr;
if (name == "VmPeak") {
x = &res.virtual_size_peak_;
}
if (name == "VmSize") {
x = &res.virtual_size_;
}
if (name == "VmHWM") {
x = &res.resident_size_peak_;
}
if (name == "VmRSS") {
x = &res.resident_size_;
}
if (x != nullptr) {
Slice value(name_end, s);
if (!value.empty() && value[0] == ':') {
value.remove_prefix(1);
}
value = trim(value);
value = split(value).first;
auto r_mem = to_integer_safe<uint64>(value);
if (r_mem.is_error()) {
LOG(ERROR) << "Failed to parse memory stats " << tag("name", name) << tag("value", value);
*x = static_cast<uint64>(-1);
} else {
*x = r_mem.ok() * 1024; // memory is in KB
}
}
if (*s == 0) {
break;
}
s++;
}
return res;
#elif TD_WINDOWS
PROCESS_MEMORY_COUNTERS_EX counters;
if (!GetProcessMemoryInfo(GetCurrentProcess(), reinterpret_cast<PROCESS_MEMORY_COUNTERS *>(&counters),
sizeof(counters))) {
return Status::Error("Call to GetProcessMemoryInfo failed");
}
MemStat res;
res.resident_size_ = counters.WorkingSetSize;
res.resident_size_peak_ = counters.PeakWorkingSetSize;
res.virtual_size_ = counters.PrivateUsage;
res.virtual_size_peak_ = counters.PeakPagefileUsage;
return res;
#else
return Status::Error("Not supported");
#endif
}
#if TD_LINUX
Status cpu_stat_self(CpuStat &stat) {
TRY_RESULT(fd, FileFd::open("/proc/self/stat", FileFd::Read));
SCOPE_EXIT {
fd.close();
};
constexpr int TMEM_SIZE = 10000;
char mem[TMEM_SIZE];
TRY_RESULT(size, fd.read(MutableSlice(mem, TMEM_SIZE - 1)));
if (size >= TMEM_SIZE - 1) {
return Status::Error("Failed for read /proc/self/stat");
}
mem[size] = 0;
char *s = mem;
char *t = mem + size;
int pass_cnt = 0;
while (pass_cnt < 15) {
if (pass_cnt == 13) {
stat.process_user_ticks_ = to_integer<uint64>(Slice(s, t));
}
if (pass_cnt == 14) {
stat.process_system_ticks_ = to_integer<uint64>(Slice(s, t));
}
while (*s && *s != ' ') {
s++;
}
if (*s == ' ') {
s++;
pass_cnt++;
} else {
return Status::Error("Unexpected end of proc file");
}
}
return Status::OK();
}
Status cpu_stat_total(CpuStat &stat) {
TRY_RESULT(fd, FileFd::open("/proc/stat", FileFd::Read));
SCOPE_EXIT {
fd.close();
};
constexpr int TMEM_SIZE = 10000;
char mem[TMEM_SIZE];
TRY_RESULT(size, fd.read(MutableSlice(mem, TMEM_SIZE - 1)));
if (size >= TMEM_SIZE - 1) {
return Status::Error("Failed for read /proc/stat");
}
mem[size] = 0;
uint64 sum = 0;
uint64 cur = 0;
for (size_t i = 0; i < size; i++) {
char c = mem[i];
if (c >= '0' && c <= '9') {
cur = cur * 10 + static_cast<uint64>(c) - '0';
} else {
sum += cur;
cur = 0;
if (c == '\n') {
break;
}
}
}
stat.total_ticks_ = sum;
return Status::OK();
}
#endif
Result<CpuStat> cpu_stat() {
#if TD_LINUX
CpuStat stat;
TRY_STATUS(cpu_stat_self(stat));
TRY_STATUS(cpu_stat_total(stat));
return stat;
#elif TD_WINDOWS
CpuStat stat;
stat.total_ticks_ = static_cast<uint64>(GetTickCount64()) * 10000;
auto hardware_concurrency = thread::hardware_concurrency();
if (hardware_concurrency != 0) {
stat.total_ticks_ *= hardware_concurrency;
}
FILETIME ignored_time;
FILETIME kernel_time;
FILETIME user_time;
if (!GetProcessTimes(GetCurrentProcess(), &ignored_time, &ignored_time, &kernel_time, &user_time)) {
return Status::Error("Failed to call GetProcessTimes");
}
stat.process_system_ticks_ = kernel_time.dwLowDateTime + (static_cast<uint64>(kernel_time.dwHighDateTime) << 32);
stat.process_user_ticks_ = user_time.dwLowDateTime + (static_cast<uint64>(user_time.dwHighDateTime) << 32);
return stat;
#else
return Status::Error("Not supported");
#endif
}
} // namespace td