tdlight/tdutils/td/utils/FlatHashMapLinear.h
2022-02-25 14:30:02 +03:00

659 lines
16 KiB
C++

//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2022
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#pragma once
#include "td/utils/bits.h"
#include "td/utils/common.h"
#include "td/utils/Random.h"
#include <cstddef>
#include <functional>
#include <initializer_list>
#include <iterator>
#include <new>
#include <utility>
namespace td {
template <class KeyT>
bool is_key_empty(const KeyT &key) {
return key == KeyT();
}
inline uint32 randomize_hash(size_t h) {
auto result = static_cast<uint32>(h & 0xFFFFFFFF);
result ^= result >> 16;
result *= 0x85ebca6b;
result ^= result >> 13;
result *= 0xc2b2ae35;
result ^= result >> 16;
return result;
}
template <class KeyT, class ValueT>
struct MapNode {
using first_type = KeyT;
using second_type = ValueT;
using public_key_type = KeyT;
using public_type = MapNode;
KeyT first{};
union {
ValueT second;
};
const KeyT &key() const {
return first;
}
MapNode &get_public() {
return *this;
}
MapNode() {
}
MapNode(KeyT key, ValueT value) : first(std::move(key)) {
new (&second) ValueT(std::move(value));
DCHECK(!empty());
}
MapNode(const MapNode &other) = delete;
MapNode &operator=(const MapNode &other) = delete;
MapNode(MapNode &&other) noexcept {
*this = std::move(other);
}
void operator=(MapNode &&other) noexcept {
DCHECK(empty());
DCHECK(!other.empty());
first = std::move(other.first);
other.first = KeyT{};
new (&second) ValueT(std::move(other.second));
other.second.~ValueT();
}
~MapNode() {
if (!empty()) {
second.~ValueT();
}
}
void copy_from(const MapNode &other) {
DCHECK(empty());
DCHECK(!other.empty());
first = other.first;
new (&second) ValueT(other.second);
}
bool empty() const {
return is_key_empty(key());
}
void clear() {
DCHECK(!empty());
first = KeyT();
second.~ValueT();
DCHECK(empty());
}
template <class... ArgsT>
void emplace(KeyT key, ArgsT &&...args) {
DCHECK(empty());
first = std::move(key);
new (&second) ValueT(std::forward<ArgsT>(args)...);
DCHECK(!empty());
}
};
template <class KeyT>
struct SetNode {
using public_key_type = KeyT;
using public_type = KeyT;
using second_type = KeyT; // TODO: remove second_type?
KeyT first{};
const KeyT &key() const {
return first;
}
KeyT &get_public() {
return first;
}
SetNode() = default;
explicit SetNode(KeyT key) : first(std::move(key)) {
}
SetNode(const SetNode &other) = delete;
SetNode &operator=(const SetNode &other) = delete;
SetNode(SetNode &&other) noexcept {
*this = std::move(other);
}
void operator=(SetNode &&other) noexcept {
DCHECK(empty());
DCHECK(!other.empty());
first = std::move(other.first);
other.first = KeyT{};
}
~SetNode() = default;
void copy_from(const SetNode &other) {
DCHECK(empty());
DCHECK(!other.empty());
first = other.first;
}
bool empty() const {
return is_key_empty(key());
}
void clear() {
first = KeyT();
DCHECK(empty());
}
void emplace(KeyT key) {
first = std::move(key);
}
};
template <class NodeT, class HashT, class EqT>
class FlatHashTable {
struct FlatHashTableInner {
uint32 used_node_count_;
uint32 bucket_count_mask_;
uint32 bucket_count_;
uint32 begin_bucket_;
NodeT nodes_[1];
};
static constexpr size_t OFFSET = 4 * sizeof(uint32);
static constexpr uint32 INVALID_BUCKET = 0xFFFFFFFF;
static inline FlatHashTableInner *get_inner(NodeT *nodes) {
DCHECK(nodes != nullptr);
return reinterpret_cast<FlatHashTableInner *>(reinterpret_cast<char *>(nodes) - OFFSET);
}
static NodeT *allocate_nodes(uint32 size) {
DCHECK(size >= 8);
DCHECK((size & (size - 1)) == 0);
CHECK(size <= min(static_cast<uint32>(1) << 29, static_cast<uint32>((0x7FFFFFFF - OFFSET) / sizeof(NodeT))));
auto inner = static_cast<FlatHashTableInner *>(std::malloc(OFFSET + sizeof(NodeT) * size));
NodeT *nodes = &inner->nodes_[0];
for (uint32 i = 0; i < size; i++) {
new (nodes + i) NodeT();
}
// inner->used_node_count_ = 0;
inner->bucket_count_mask_ = size - 1;
inner->bucket_count_ = size;
inner->begin_bucket_ = INVALID_BUCKET;
return nodes;
}
static void clear_nodes(NodeT *nodes) {
auto inner = get_inner(nodes);
auto size = inner->bucket_count_;
for (uint32 i = 0; i < size; i++) {
nodes[i].~NodeT();
}
std::free(inner);
}
inline FlatHashTableInner *get_inner() {
return get_inner(nodes_);
}
inline const FlatHashTableInner *get_inner() const {
DCHECK(nodes_ != nullptr);
return get_inner(const_cast<NodeT *>(nodes_));
}
inline uint32 &used_node_count() {
return get_inner()->used_node_count_;
}
inline uint32 get_used_node_count() const {
return get_inner()->used_node_count_;
}
inline uint32 get_bucket_count_mask() const {
return get_inner()->bucket_count_mask_;
}
inline uint32 get_bucket_count() const {
return get_inner()->bucket_count_;
}
public:
using KeyT = typename NodeT::public_key_type;
using key_type = typename NodeT::public_key_type;
using value_type = typename NodeT::public_type;
struct Iterator {
using iterator_category = std::bidirectional_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = FlatHashTable::value_type;
using pointer = value_type *;
using reference = value_type &;
friend class FlatHashTable;
Iterator &operator++() {
DCHECK(it_ != nullptr);
do {
if (unlikely(++it_ == end_)) {
it_ = begin_;
}
if (unlikely(it_ == start_)) {
it_ = nullptr;
break;
}
} while (it_->empty());
return *this;
}
reference operator*() {
return it_->get_public();
}
pointer operator->() {
return &*it_;
}
bool operator==(const Iterator &other) const {
DCHECK(begin_ == other.begin_);
DCHECK(end_ == other.end_);
return it_ == other.it_;
}
bool operator!=(const Iterator &other) const {
DCHECK(begin_ == other.begin_);
DCHECK(end_ == other.end_);
return it_ != other.it_;
}
Iterator() = default;
Iterator(NodeT *it, FlatHashTable *map)
: it_(it), begin_(map->nodes_), start_(it_), end_(map->nodes_ + map->bucket_count()) {
}
private:
NodeT *it_ = nullptr;
NodeT *begin_ = nullptr;
NodeT *start_ = nullptr;
NodeT *end_ = nullptr;
};
struct ConstIterator {
using iterator_category = std::bidirectional_iterator_tag;
using difference_type = std::ptrdiff_t;
using value_type = FlatHashTable::value_type;
using pointer = const value_type *;
using reference = const value_type &;
friend class FlatHashTable;
ConstIterator &operator++() {
++it_;
return *this;
}
reference operator*() {
return *it_;
}
pointer operator->() {
return &*it_;
}
bool operator==(const ConstIterator &other) const {
return it_ == other.it_;
}
bool operator!=(const ConstIterator &other) const {
return it_ != other.it_;
}
ConstIterator() = default;
ConstIterator(Iterator it) : it_(std::move(it)) {
}
private:
Iterator it_;
};
using iterator = Iterator;
using const_iterator = ConstIterator;
FlatHashTable() = default;
FlatHashTable(const FlatHashTable &other) {
assign(other);
}
void operator=(const FlatHashTable &other) {
clear();
assign(other);
}
FlatHashTable(std::initializer_list<NodeT> nodes) {
if (nodes.size() == 0) {
return;
}
reserve(nodes.size());
uint32 used_nodes = 0;
for (auto &new_node : nodes) {
CHECK(!new_node.empty());
auto bucket = calc_bucket(new_node.key());
while (true) {
auto &node = nodes_[bucket];
if (node.empty()) {
node.copy_from(new_node);
used_nodes++;
break;
}
if (EqT()(node.key(), new_node.key())) {
break;
}
next_bucket(bucket);
}
}
used_node_count() = used_nodes;
}
FlatHashTable(FlatHashTable &&other) noexcept : nodes_(other.nodes_) {
other.nodes_ = nullptr;
}
void operator=(FlatHashTable &&other) noexcept {
clear();
nodes_ = other.nodes_;
other.nodes_ = nullptr;
}
void swap(FlatHashTable &other) noexcept {
std::swap(nodes_, other.nodes_);
}
~FlatHashTable() = default;
uint32 bucket_count() const {
return unlikely(nodes_ == nullptr) ? 0 : get_bucket_count();
}
Iterator find(const KeyT &key) {
if (unlikely(nodes_ == nullptr) || is_key_empty(key)) {
return end();
}
auto bucket = calc_bucket(key);
while (true) {
auto &node = nodes_[bucket];
if (EqT()(node.key(), key)) {
return Iterator{&node, this};
}
if (node.empty()) {
return end();
}
next_bucket(bucket);
}
}
ConstIterator find(const KeyT &key) const {
return ConstIterator(const_cast<FlatHashTable *>(this)->find(key));
}
size_t size() const {
return unlikely(nodes_ == nullptr) ? 0 : get_used_node_count();
}
bool empty() const {
return unlikely(nodes_ == nullptr) || get_used_node_count() == 0;
}
Iterator begin() {
if (empty()) {
return end();
}
auto &begin_bucket = get_inner()->begin_bucket_;
if (begin_bucket == INVALID_BUCKET) {
begin_bucket = Random::fast_uint32() & get_bucket_count_mask();
while (nodes_[begin_bucket].empty()) {
next_bucket(begin_bucket);
}
}
return Iterator(nodes_ + begin_bucket, this);
}
Iterator end() {
return Iterator(nullptr, this);
}
ConstIterator begin() const {
return ConstIterator(const_cast<FlatHashTable *>(this)->begin());
}
ConstIterator end() const {
return ConstIterator(const_cast<FlatHashTable *>(this)->end());
}
void reserve(size_t size) {
if (size == 0) {
return;
}
CHECK(size <= (1u << 29));
uint32 want_size = normalize(static_cast<uint32>(size) * 5 / 3 + 1);
if (want_size > bucket_count()) {
resize(want_size);
}
}
template <class... ArgsT>
std::pair<Iterator, bool> emplace(KeyT key, ArgsT &&...args) {
try_grow();
CHECK(!is_key_empty(key));
auto bucket = calc_bucket(key);
while (true) {
auto &node = nodes_[bucket];
if (EqT()(node.key(), key)) {
return {Iterator(&node, this), false};
}
if (node.empty()) {
node.emplace(std::move(key), std::forward<ArgsT>(args)...);
used_node_count()++;
return {Iterator(&node, this), true};
}
next_bucket(bucket);
}
}
std::pair<Iterator, bool> insert(KeyT key) {
return emplace(std::move(key));
}
template <class ItT>
void insert(ItT begin, ItT end) {
for (; begin != end; ++begin) {
emplace(*begin);
}
}
template <class T = typename NodeT::second_type>
T &operator[](const KeyT &key) {
return emplace(key).first->second;
}
size_t erase(const KeyT &key) {
auto it = find(key);
if (it == end()) {
return 0;
}
erase(it);
return 1;
}
size_t count(const KeyT &key) const {
return find(key) != end();
}
void clear() {
if (nodes_ != nullptr) {
clear_nodes(nodes_);
nodes_ = nullptr;
}
}
void erase(Iterator it) {
DCHECK(it != end());
DCHECK(!it.it_->empty());
erase_node(it.it_);
try_shrink();
}
template <class F>
void remove_if(F &&f) {
if (empty()) {
return;
}
auto it = begin().it_;
auto end = nodes_ + bucket_count();
while (it != end && !it->empty()) {
++it;
}
if (it == end) {
do {
--it;
} while (!it->empty());
}
auto first_empty = it;
while (it != end) {
if (!it->empty() && f(it->get_public())) {
erase_node(it);
} else {
++it;
}
}
for (it = nodes_; it != first_empty;) {
if (!it->empty() && f(it->get_public())) {
erase_node(it);
} else {
++it;
}
}
try_shrink();
}
private:
NodeT *nodes_ = nullptr;
void assign(const FlatHashTable &other) {
if (other.size() == 0) {
return;
}
resize(other.bucket_count());
for (const auto &new_node : other) {
auto bucket = calc_bucket(new_node.key());
while (true) {
auto &node = nodes_[bucket];
if (node.empty()) {
node.copy_from(new_node);
break;
}
next_bucket(bucket);
}
}
used_node_count() = other.get_used_node_count();
}
void try_grow() {
if (unlikely(nodes_ == nullptr)) {
resize(8);
} else if (unlikely(get_used_node_count() * 5 > get_bucket_count_mask() * 3)) {
resize(2 * get_bucket_count_mask() + 2);
}
invalidate_iterators();
}
void try_shrink() {
DCHECK(nodes_ != nullptr);
if (unlikely(get_used_node_count() * 10 < get_bucket_count_mask() && get_bucket_count_mask() > 7)) {
resize(normalize((get_used_node_count() + 1) * 5 / 3 + 1));
}
invalidate_iterators();
}
static uint32 normalize(uint32 size) {
return td::max(static_cast<uint32>(1) << (32 - count_leading_zeroes32(size)), static_cast<uint32>(8));
}
uint32 calc_bucket(const KeyT &key) const {
return randomize_hash(HashT()(key)) & get_bucket_count_mask();
}
inline void next_bucket(uint32 &bucket) const {
bucket = (bucket + 1) & get_bucket_count_mask();
}
void resize(uint32 new_size) {
if (unlikely(nodes_ == nullptr)) {
nodes_ = allocate_nodes(new_size);
used_node_count() = 0;
return;
}
auto old_nodes = nodes_;
uint32 old_size = get_used_node_count();
uint32 old_bucket_count = get_bucket_count();
nodes_ = allocate_nodes(new_size);
used_node_count() = old_size;
auto old_nodes_end = old_nodes + old_bucket_count;
for (NodeT *old_node = old_nodes; old_node != old_nodes_end; ++old_node) {
if (old_node->empty()) {
continue;
}
auto bucket = calc_bucket(old_node->key());
while (!nodes_[bucket].empty()) {
next_bucket(bucket);
}
nodes_[bucket] = std::move(*old_node);
}
clear_nodes(old_nodes);
}
void erase_node(NodeT *it) {
DCHECK(nodes_ <= it && static_cast<size_t>(it - nodes_) < bucket_count());
it->clear();
used_node_count()--;
const auto bucket_count = get_bucket_count();
const auto *end = nodes_ + bucket_count;
for (auto *test_node = it + 1; test_node != end; test_node++) {
if (likely(test_node->empty())) {
return;
}
auto want_node = nodes_ + calc_bucket(test_node->key());
if (want_node <= it || want_node > test_node) {
*it = std::move(*test_node);
it = test_node;
}
}
auto empty_i = static_cast<uint32>(it - nodes_);
auto empty_bucket = empty_i;
for (uint32 test_i = bucket_count;; test_i++) {
auto test_bucket = test_i - get_bucket_count();
if (nodes_[test_bucket].empty()) {
return;
}
auto want_i = calc_bucket(nodes_[test_bucket].key());
if (want_i < empty_i) {
want_i += bucket_count;
}
if (want_i <= empty_i || want_i > test_i) {
nodes_[empty_bucket] = std::move(nodes_[test_bucket]);
empty_i = test_i;
empty_bucket = test_bucket;
}
}
}
inline void invalidate_iterators() {
get_inner()->begin_bucket_ = INVALID_BUCKET;
}
};
template <class KeyT, class ValueT, class HashT = std::hash<KeyT>, class EqT = std::equal_to<KeyT>>
using FlatHashMapImpl = FlatHashTable<MapNode<KeyT, ValueT>, HashT, EqT>;
template <class KeyT, class HashT = std::hash<KeyT>, class EqT = std::equal_to<KeyT>>
using FlatHashSetImpl = FlatHashTable<SetNode<KeyT>, HashT, EqT>;
} // namespace td