tdlight/tdactor/test/actors_main.cpp
2022-07-28 00:15:18 +03:00

513 lines
13 KiB
C++

//
// Copyright Aliaksei Levin (levlam@telegram.org), Arseny Smirnov (arseny30@gmail.com) 2014-2022
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#include "td/actor/actor.h"
#include "td/actor/ConcurrentScheduler.h"
#include "td/actor/PromiseFuture.h"
#include "td/utils/common.h"
#include "td/utils/logging.h"
#include "td/utils/Random.h"
#include "td/utils/ScopeGuard.h"
#include "td/utils/tests.h"
#include <limits>
#include <map>
#include <memory>
#include <utility>
template <class ContainerT>
static typename ContainerT::value_type &rand_elem(ContainerT &cont) {
CHECK(0 < cont.size() && cont.size() <= static_cast<size_t>(std::numeric_limits<int>::max()));
return cont[td::Random::fast(0, static_cast<int>(cont.size()) - 1)];
}
static td::uint32 fast_pow_mod_uint32(td::uint32 x, td::uint32 p) {
td::uint32 res = 1;
while (p) {
if (p & 1) {
res *= x;
}
x *= x;
p >>= 1;
}
return res;
}
static td::uint32 slow_pow_mod_uint32(td::uint32 x, td::uint32 p) {
td::uint32 res = 1;
for (td::uint32 i = 0; i < p; i++) {
res *= x;
}
return res;
}
struct ActorQuery {
td::uint32 query_id{};
td::uint32 result{};
td::vector<int> todo;
ActorQuery() = default;
ActorQuery(const ActorQuery &) = delete;
ActorQuery &operator=(const ActorQuery &) = delete;
ActorQuery(ActorQuery &&) = default;
ActorQuery &operator=(ActorQuery &&) = default;
~ActorQuery() {
LOG_CHECK(todo.empty()) << "ActorQuery lost";
}
int next_pow() {
CHECK(!todo.empty());
int res = todo.back();
todo.pop_back();
return res;
}
bool ready() {
return todo.empty();
}
};
static td::uint32 fast_calc(ActorQuery &q) {
td::uint32 result = q.result;
for (auto x : q.todo) {
result = fast_pow_mod_uint32(result, x);
}
return result;
}
class Worker final : public td::Actor {
public:
explicit Worker(int threads_n) : threads_n_(threads_n) {
}
void query(td::PromiseActor<td::uint32> &&promise, td::uint32 x, td::uint32 p) {
td::uint32 result = slow_pow_mod_uint32(x, p);
promise.set_value(std::move(result));
(void)threads_n_;
// if (threads_n_ > 1 && td::Random::fast(0, 9) == 0) {
// migrate(td::Random::fast(2, threads_n));
//}
}
private:
int threads_n_;
};
class QueryActor final : public td::Actor {
public:
class Callback {
public:
Callback() = default;
Callback(const Callback &) = delete;
Callback &operator=(const Callback &) = delete;
Callback(Callback &&) = delete;
Callback &operator=(Callback &&) = delete;
virtual ~Callback() = default;
virtual void on_result(ActorQuery &&query) = 0;
virtual void on_closed() = 0;
};
explicit QueryActor(int threads_n) : threads_n_(threads_n) {
}
void set_callback(td::unique_ptr<Callback> callback) {
callback_ = std::move(callback);
}
void set_workers(td::vector<td::ActorId<Worker>> workers) {
workers_ = std::move(workers);
}
void query(ActorQuery &&query) {
td::uint32 x = query.result;
td::uint32 p = query.next_pow();
if (td::Random::fast(0, 3) && (p <= 1000 || workers_.empty())) {
query.result = slow_pow_mod_uint32(x, p);
callback_->on_result(std::move(query));
} else {
auto future = td::Random::fast(0, 3) == 0
? td::send_promise<td::ActorSendType::Immediate>(rand_elem(workers_), &Worker::query, x, p)
: td::send_promise<td::ActorSendType::Later>(rand_elem(workers_), &Worker::query, x, p);
if (future.is_ready()) {
query.result = future.move_as_ok();
callback_->on_result(std::move(query));
} else {
future.set_event(td::EventCreator::raw(actor_id(), query.query_id));
auto query_id = query.query_id;
pending_.emplace(query_id, std::make_pair(std::move(future), std::move(query)));
}
}
if (threads_n_ > 1 && td::Random::fast(0, 9) == 0) {
migrate(td::Random::fast(2, threads_n_));
}
}
void raw_event(const td::Event::Raw &event) final {
td::uint32 id = event.u32;
auto it = pending_.find(id);
auto future = std::move(it->second.first);
auto query = std::move(it->second.second);
pending_.erase(it);
CHECK(future.is_ready());
query.result = future.move_as_ok();
callback_->on_result(std::move(query));
}
void close() {
callback_->on_closed();
stop();
}
void on_start_migrate(td::int32 sched_id) final {
for (auto &it : pending_) {
start_migrate(it.second.first, sched_id);
}
}
void on_finish_migrate() final {
for (auto &it : pending_) {
finish_migrate(it.second.first);
}
}
private:
td::unique_ptr<Callback> callback_;
std::map<td::uint32, std::pair<td::FutureActor<td::uint32>, ActorQuery>> pending_;
td::vector<td::ActorId<Worker>> workers_;
int threads_n_;
};
class MainQueryActor final : public td::Actor {
class QueryActorCallback final : public QueryActor::Callback {
public:
void on_result(ActorQuery &&query) final {
if (query.ready()) {
send_closure(parent_id_, &MainQueryActor::on_result, std::move(query));
} else {
send_closure(next_solver_, &QueryActor::query, std::move(query));
}
}
void on_closed() final {
send_closure(parent_id_, &MainQueryActor::on_closed);
}
QueryActorCallback(td::ActorId<MainQueryActor> parent_id, td::ActorId<QueryActor> next_solver)
: parent_id_(parent_id), next_solver_(next_solver) {
}
private:
td::ActorId<MainQueryActor> parent_id_;
td::ActorId<QueryActor> next_solver_;
};
const int ACTORS_CNT = 10;
const int WORKERS_CNT = 4;
public:
explicit MainQueryActor(int threads_n) : threads_n_(threads_n) {
}
void start_up() final {
actors_.resize(ACTORS_CNT);
for (auto &actor : actors_) {
auto actor_ptr = td::make_unique<QueryActor>(threads_n_);
actor = register_actor("QueryActor", std::move(actor_ptr), threads_n_ > 1 ? td::Random::fast(2, threads_n_) : 0)
.release();
}
workers_.resize(WORKERS_CNT);
for (auto &worker : workers_) {
auto actor_ptr = td::make_unique<Worker>(threads_n_);
worker = register_actor("Worker", std::move(actor_ptr), threads_n_ > 1 ? td::Random::fast(2, threads_n_) : 0)
.release();
}
for (int i = 0; i < ACTORS_CNT; i++) {
ref_cnt_++;
send_closure(actors_[i], &QueryActor::set_callback,
td::make_unique<QueryActorCallback>(actor_id(this), actors_[(i + 1) % ACTORS_CNT]));
send_closure(actors_[i], &QueryActor::set_workers, workers_);
}
yield();
}
void on_result(ActorQuery &&query) {
CHECK(query.ready());
CHECK(query.result == expected_[query.query_id]);
in_cnt_++;
wakeup();
}
ActorQuery create_query() {
ActorQuery q;
q.query_id = (query_id_ += 2);
q.result = q.query_id;
q.todo = {1, 1, 1, 1, 1, 1, 1, 1, 10000};
expected_[q.query_id] = fast_calc(q);
return q;
}
void on_closed() {
ref_cnt_--;
if (ref_cnt_ == 0) {
td::Scheduler::instance()->finish();
}
}
void wakeup() final {
int cnt = 10000;
while (out_cnt_ < in_cnt_ + 100 && out_cnt_ < cnt) {
if (td::Random::fast_bool()) {
send_closure(rand_elem(actors_), &QueryActor::query, create_query());
} else {
send_closure_later(rand_elem(actors_), &QueryActor::query, create_query());
}
out_cnt_++;
}
if (in_cnt_ == cnt) {
in_cnt_++;
ref_cnt_--;
for (auto &actor : actors_) {
send_closure(actor, &QueryActor::close);
}
}
}
private:
std::map<td::uint32, td::uint32> expected_;
td::vector<td::ActorId<QueryActor>> actors_;
td::vector<td::ActorId<Worker>> workers_;
int out_cnt_ = 0;
int in_cnt_ = 0;
int query_id_ = 1;
int ref_cnt_ = 1;
int threads_n_;
};
class SimpleActor final : public td::Actor {
public:
explicit SimpleActor(td::int32 threads_n) : threads_n_(threads_n) {
}
void start_up() final {
auto actor_ptr = td::make_unique<Worker>(threads_n_);
worker_ =
register_actor("Worker", std::move(actor_ptr), threads_n_ > 1 ? td::Random::fast(2, threads_n_) : 0).release();
yield();
}
void wakeup() final {
if (q_ == 10000) {
td::Scheduler::instance()->finish();
stop();
return;
}
q_++;
p_ = td::Random::fast_bool() ? 1 : 10000;
auto future = td::Random::fast(0, 3) == 0
? td::send_promise<td::ActorSendType::Immediate>(worker_, &Worker::query, q_, p_)
: td::send_promise<td::ActorSendType::Later>(worker_, &Worker::query, q_, p_);
if (future.is_ready()) {
auto result = future.move_as_ok();
CHECK(result == fast_pow_mod_uint32(q_, p_));
yield();
} else {
future.set_event(td::EventCreator::raw(actor_id(), nullptr));
future_ = std::move(future);
}
// if (threads_n_ > 1 && td::Random::fast(0, 2) == 0) {
// migrate(td::Random::fast(1, threads_n));
//}
}
void raw_event(const td::Event::Raw &event) final {
auto result = future_.move_as_ok();
CHECK(result == fast_pow_mod_uint32(q_, p_));
yield();
}
void on_start_migrate(td::int32 sched_id) final {
start_migrate(future_, sched_id);
}
void on_finish_migrate() final {
finish_migrate(future_);
}
private:
td::int32 threads_n_;
td::ActorId<Worker> worker_;
td::FutureActor<td::uint32> future_;
td::uint32 q_ = 1;
td::uint32 p_ = 0;
};
class SendToDead final : public td::Actor {
public:
class Parent final : public td::Actor {
public:
explicit Parent(td::ActorShared<> parent, int ttl = 3) : parent_(std::move(parent)), ttl_(ttl) {
}
void start_up() final {
set_timeout_in(td::Random::fast_uint32() % 3 * 0.001);
if (ttl_ != 0) {
child_ = td::create_actor_on_scheduler<Parent>(
"Child", td::Random::fast_uint32() % td::Scheduler::instance()->sched_count(), actor_shared(this),
ttl_ - 1);
}
}
void timeout_expired() final {
stop();
}
private:
td::ActorOwn<Parent> child_;
td::ActorShared<> parent_;
int ttl_;
};
void start_up() final {
for (int i = 0; i < 2000; i++) {
td::create_actor_on_scheduler<Parent>(
"Parent", td::Random::fast_uint32() % td::Scheduler::instance()->sched_count(), create_reference(), 4)
.release();
}
}
td::ActorShared<> create_reference() {
ref_cnt_++;
return actor_shared(this);
}
void hangup_shared() final {
ref_cnt_--;
if (ref_cnt_ == 0) {
ttl_--;
if (ttl_ <= 0) {
td::Scheduler::instance()->finish();
stop();
} else {
start_up();
}
}
}
td::uint32 ttl_{50};
td::uint32 ref_cnt_{0};
};
TEST(Actors, send_to_dead) {
//TODO: fix CHECK(storage_count_.load() == 0)
return;
td::ConcurrentScheduler sched;
int threads_n = 5;
sched.init(threads_n);
sched.create_actor_unsafe<SendToDead>(0, "SendToDead").release();
sched.start();
while (sched.run_main(10)) {
// empty
}
sched.finish();
}
TEST(Actors, main_simple) {
td::ConcurrentScheduler sched;
int threads_n = 3;
sched.init(threads_n);
sched.create_actor_unsafe<SimpleActor>(threads_n > 1 ? 1 : 0, "simple", threads_n).release();
sched.start();
while (sched.run_main(10)) {
// empty
}
sched.finish();
}
TEST(Actors, main) {
td::ConcurrentScheduler sched;
int threads_n = 9;
sched.init(threads_n);
sched.create_actor_unsafe<MainQueryActor>(threads_n > 1 ? 1 : 0, "MainQuery", threads_n).release();
sched.start();
while (sched.run_main(10)) {
// empty
}
sched.finish();
}
class DoAfterStop final : public td::Actor {
public:
void loop() final {
ptr = td::make_unique<int>(10);
stop();
CHECK(*ptr == 10);
td::Scheduler::instance()->finish();
}
private:
td::unique_ptr<int> ptr;
};
TEST(Actors, do_after_stop) {
td::ConcurrentScheduler sched;
int threads_n = 0;
sched.init(threads_n);
sched.create_actor_unsafe<DoAfterStop>(0, "DoAfterStop").release();
sched.start();
while (sched.run_main(10)) {
// empty
}
sched.finish();
}
class XContext final : public td::ActorContext {
public:
td::int32 get_id() const final {
return 123456789;
}
void validate() {
CHECK(x == 1234);
}
~XContext() final {
x = 0;
}
int x = 1234;
};
class WithXContext final : public td::Actor {
public:
void start_up() final {
auto old_context = set_context(std::make_shared<XContext>());
}
void f(td::unique_ptr<td::Guard> guard) {
}
void close() {
stop();
}
};
static void check_context() {
auto ptr = static_cast<XContext *>(td::Scheduler::context());
CHECK(ptr != nullptr);
ptr->validate();
}
TEST(Actors, context_during_destruction) {
td::ConcurrentScheduler sched;
int threads_n = 0;
sched.init(threads_n);
{
auto guard = sched.get_main_guard();
auto with_context = td::create_actor<WithXContext>("WithXContext").release();
send_closure(with_context, &WithXContext::f, td::create_lambda_guard([] { check_context(); }));
send_closure_later(with_context, &WithXContext::close);
send_closure(with_context, &WithXContext::f, td::create_lambda_guard([] { check_context(); }));
send_closure(with_context, &WithXContext::f, td::create_lambda_guard([] { td::Scheduler::instance()->finish(); }));
}
sched.start();
while (sched.run_main(10)) {
// empty
}
sched.finish();
}