GitOrigin-RevId: 13a400d0fa7ca7eb31a334e4aa3e6c023445fa8c
TDLib
TDLib (Telegram Database library) is a cross-platform library for building Telegram clients. It can be easily used from almost any programming language.
Table of Contents
- Features
- Examples and documentation
- Dependencies
- Building
- Installing dependencies
- Using in CMake C++ projects
- Using in Java projects
- Using with other programming languages
- License
Features
TDLib
has many advantages. Notably TDLib
is:
- Cross-platform:
TDLib
can be used on Android, iOS, Windows, macOS, Linux, Windows Phone, WebAssembly, watchOS, tvOS, Tizen, Cygwin. It should also work on other *nix systems with or without minimal effort. - Multilanguage:
TDLib
can be easily used with any programming language that is able to execute C functions. Additionally it already has native bindings to Java (using JNI) and C# (using C++/CLI). - Easy to use:
TDLib
takes care of all network implementation details, encryption and local data storage. - High-performance: in the Telegram Bot API, each
TDLib
instance handles more than 18000 active bots simultaneously. - Well-documented: all
TDLib
API methods and public interfaces are fully documented. - Consistent:
TDLib
guarantees that all updates are delivered in the right order. - Reliable:
TDLib
remains stable on slow and unstable Internet connections. - Secure: all local data is encrypted using a user-provided encryption key.
- Fully-asynchronous: requests to
TDLib
don't block each other or anything else, responses are sent when they are available.
Examples and documentation
Take a look at our examples and documentation.
Dependencies
TDLib
depends on:
- C++14 compatible compiler (Clang 3.4+, GCC 4.9+, MSVC 19.0+ (Visual Studio 2015+), Intel C++ Compiler 17+)
- OpenSSL
- zlib
- gperf (build only)
- CMake (3.0.2+, build only)
- PHP (optional, for docs generation)
- Doxygen (optional, for docs generation)
Building
Install all TDLib
dependencies as described in Installing dependencies.
Then enter directory containing TDLib
sources and compile them using CMake:
mkdir build
cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
cmake --build .
Installing dependencies
OS X
- Install the latest XCode command line tools.
- Install other dependencies, for example, using Homebrew:
brew install gperf cmake openssl
- Build
TDLib
with CMake as explained in building. You may need to manually specify path to the installed OpenSSL to CMake, e.g.,
cmake -DCMAKE_BUILD_TYPE=Release -DOPENSSL_ROOT_DIR=/usr/local/opt/openssl/ ..
Windows
- Download and install gperf. Add the path to gperf to the PATH environment variable.
- Install vcpkg.
- Run the following commands:
C:\src\vcpkg> .\vcpkg install openssl zlib
- Build
TDLib
with CMake as explained in building, but instead ofcmake -DCMAKE_BUILD_TYPE=Release ..
usecmake -DCMAKE_TOOLCHAIN_FILE=C:\src\vcpkg\scripts\buildsystems\vcpkg.cmake ..
Linux
- Install all dependencies using your package manager.
Using in CMake C++ projects
For C++ projects that use CMake, the best approach is to build TDLib
as part of your project or to use a prebuilt installation.
There are several libraries that you could use in your CMake project:
- Td::TdJson, Td::TdJsonStatic — dynamic and static version of a json interface. Has a simple C interface, so it can be easily used with any programming language that supports C bindings.
- Td::TdStatic — static library with C++ interface.
- Td::TdCoreStatic — static library with low-level C++ interface intended mostly for internal usage.
For example, part of your CMakeLists.txt may look like this:
add_subdirectory(td)
target_link_libraries(YourTarget PRIVATE Td::TdStatic)
Or you could install TDLib
and then reference it in your CMakeLists.txt like this:
find_package(Td 1.0.6 REQUIRED)
target_link_libraries(YourTarget PRIVATE Td::TdStatic)
See example/cpp/CMakeLists.txt.
Using in Java projects
TDLib provides native Java interface through JNI.
See example/java for example of using TDLib from Java and detailed build and usage instructions.
Using from other programming languages
TDLib
provides efficient native C++, Java, and C# (will be released soon) interfaces.
But for most use cases we suggest to use the JSON interface. It can be easily used with any language that supports C bindinds. See
example/python/tdjson_example.py for an
example of such usage.
License
The TDLib is licensed under the terms of the Boost Software License. See LICENSE_1_0.txt for more information.