\textit{We give a vanishing probability not rain but tomorrow will rain.}
\\\textit{So this is } +\infty\\
\lim_{\hat{y}\to 1^-}\ell(0,\hat{y}) = + \infty
\\\\
$
The algorithm will be punish high more the prediction is not real. Algorithm will not get 0 and 1 because for example is impossible to get a perfect prediction.\\
This loss is useful to give this information to the algorithm.\\\\
Data points: they have some semantic labels that denote some true about this data points and we want to predict this labels.\\
We need to define what data points are: number? Strings? File? Typically they are stored in database records \\
They can have very precise structure or more homogeneously structured \\
A data point can be viewed as a vector in some d dimensional real space. So it’s a vector of number
\\
$$
\barra{R}^d\\\\
X = (x_1,x_2 ..., x_d) \in\barra{R}^c
$$
\\
Image can be viewed as a vector of pixel values (grey scale 0-255).\\
I can use geometry to learn because point are in my Euclidean space. Data can be represented as point in Euclidean space. Images are list of pixel that are pretty much the same range and structure (from 0 to 255). It’s very natural to put them in a space.\\\\
Assume X can be a record with heterogeneous fields:\\
For example medical records, we have several values and each fields has his meaning by it’s own. (Sex, weight, height, age, zip code)\\
Each one has a different range, in some cases is numerical but something have like age ..\\
Does have any sense to see a medical record as a point since coordinates
have different meaning.\\
\textbf{Fields are not comparable.}\\
This is something that you do: when you want to solve some inference you have to decide which are the label and what is the label space and we have to encode the data points.\\\\
Data algorithm expect some homogenous interface.
In this case algorithm has to build records with different values of fields.\\
This is something that we have to pay attention too.\\
You can always each range of values in number. So ages is number, sex you
can give 0 and 1, weight number and zip code is number.\\
How ever geometry doesn’t make sense since I cannot compare this
coordinates.\\
Linear space i can sum up as vector: i can make linear combination of
vectors.\\
Inner product to measure angles! (We will see in linear classifier).\\\\
I can scramble the number of my zip code.\\
So we get problems with sex and zip code\\\\
Why do we care about geometry? I can use geometry to learn.\\
However there is more to that, geometry will carry some semantically
information that I’m going to preserve during prediction.\\
I want to encode my images as vectors in a space. Images with dog.....\\\\
PCA doesn’t work because assume we encode in linear space.\\
We hope geometry will help us to predict label correctly and sometimes i hard
to convert data into geometry point.\\
Example of comparable data: images, or documents. \\
Assume we have documents with corpus (set of documents).\\
Maybe in English and talk about different thing and different words.\\
X is a document and i want to encode X into a point fix in bidimensional
space.\\
There is a way to encode a set of documents in point in a fixed dimensional
space in such way it make sense this coordinate are comparable.\\
I can represent fields with [0,1] for Neural network for example. But they have no geometrical meaning\\