2020-04-12 19:35:06 +02:00
\documentclass [../main.tex] { subfiles}
\begin { document}
2020-04-13 12:52:55 +02:00
\chapter { Lecture 10 - 07-04-2020}
\section { TO BE DEFINE}
2020-04-12 15:16:55 +02:00
2020-04-16 15:48:36 +02:00
\section { MANCANO 20 MINUTI DI LEZIONE}
$$ \barra { E } \left [ z \right ] = \barra { E } \left [ \, \barra { E } \left [ z \, | \, x \right ] \, \right ] \qquad \longrightarrow \quad \barra { E } \left [ Z \, | \, X = x \right ] $$
\
$$ \barra { E } \left [ X \right ] = \sum _ { t = 1 } ^ { m } \barra { E } \left [ \, x \cdot \Pi \left ( A \begin { small }
t \end { small} \right ) \, \right ] \qquad \bred { $ A _ 1 ,..., A _ m $ portion of sample law of total probability} $$
\\ \
$$ x \in \mathbb { R } ^ d \qquad
\mathbb { P} (Y_ { \Pi (s,x)} = 1) = \\ \\ \mathbb { E} \left [\Pi { Y_{\Pi(s,x)} = 1 } \right] = \qquad \bred { Law of total probability}
$$
$$
= \sum _ { t = 1} ^ { m} \, \mathbb { E} \left (\, \Pi \{ Y_ t = 1\} \, \cdot \, \Pi \cdot \, \{ \, \Pi (s,x) = t \} \, \right ] \quad =
$$
$$
= \quad \sum _ { t = 1} ^ { m} \mathbb { E} \, \left [ \, \mathbb{E}\left[\,\Pi\{Y_t = 1\} \, \cdot \, \Pi \cdot \, \{\Pi(s,x) = t\}\, |\, X_t \, \right] \, \right ] =
$$ \\
given the fact that $ Y _ t \sim \eta ( X _ t ) \Rightarrow $ give me probability \\
$$
Y_ t = 1 \ \ and \ \ \Pi (s,x) = t \quad \textit { are independent given $ X _ Y $ } \quad \left ( \, e. g. \ \ \mathbb { E} \left [ Z\, X \right] = \mathbb { E} \left [x\right] \cdot \mathbb { E} \left [z \right] \ \right )
$$
$$
= \sum _ { t = 1} ^ { m} \, \barra { E} \, \left [\barra{E} \, \left[ \,\Pi\{Y_t = 1\}\,|\,X_t \, \right] \cdot \barra { E} \left [ \, \Pi(s,x) = t | Xt \, \right] \, \right ] \
= \ \sum _ { t = 1} ^ { m} \barra { E} \left [\, \eta(X_t) \, \cdot \, \Pi \, \cdot \, \{\Pi (s,x) = t \} \, \right] =
$$
$$
= \quad \barra { E} \left [ \, \eta \, (X_{\Pi(s,x)}\,)\right]
$$
2020-04-12 15:16:55 +02:00
2020-04-16 15:48:36 +02:00
$$ \barra { P } ( Y _ { \Pi ( s,x ) } | X = x = \barra { E } \left [ \, \eta ( X _ \Pi ( s,x ) ) \, \right ]
$$
\\
2020-04-12 15:16:55 +02:00
2020-04-16 15:48:36 +02:00
$$
\barra { P} (Y_ { \Pi (s,x)} = 1, y = -1 ) =
\barra { E} \left [ \, \Pi\{Y_{\Pi(s,x) }= 1\} \cdot \Pi \{Y= -1|X\} \, \right] \, ] = \
$$
$$
= \barra { E} \left [ \, \Pi \{ Y_{\Pi(s,x)} = 1\} \cdot \Pi\{ y = -1 \} \, \right]
= \barra { E} \left [ \, \barra{E}\left[ \,\Pi \{ Y_{\Pi(s,x)} = 1\} \cdot \Pi \{ y = -1 | X \} \, \right] \, \right ] =
$$
\bred { by independence i can split them }
$$
Y_ { \Pi (s,x)} = 1 \quad \quad y = -1 \bred { \quad which is $ 1 - \eta ( x ) $ } \quad when \quad X = x
$$
2020-04-12 15:16:55 +02:00
2020-04-16 15:48:36 +02:00
$$ = \barra { E } \left [ \, \barra { E } \left [ \, \Pi \{ Y _ \Pi ( s,x ) \} = 1 | X \, \right ] \cdot \barra { E } \left [ \, \Pi \{ y = - 1 \} |X \, \right ] \, \right ] = \barra { E } \left [ \, \eta _ { \Pi ( s,x ) } \cdot ( 1 - \eta ( x ) ) \, \right ] =
$$
2020-04-12 15:16:55 +02:00
2020-04-16 15:48:36 +02:00
similarly:
$$
\barra { P} \left (Y_ { \Pi (s,x)} = -1 , y = 1 \right ) = \barra { E} \left [\, (1- \eta_{\Pi(s,x)}) \cdot \eta(x) \, \right]
$$ \
$$
\barra { E} \left [\, \ell_D (\hat{h}_s) \, \right] = \barra { P} \left (Y_ { \Pi (s,x)} \neq y \right ) = \barra { P} \left (Y_ { \Pi (s,x)} = 1, y = -1\right ) + \barra { P} \left (Y_ { Pi(s,x)} = -1, y = 1\right )
$$
$$
= \barra { E} \left [\, \eta_{\Pi(s,x)} \cdot (1-eta(x))\right] + \barra { E} \left [\,( 1- \eta_{\Pi(s,x)})\cdot \eta(x)\, \right]
$$
2020-04-12 15:16:55 +02:00
\\
2020-04-16 15:48:36 +02:00
\bred {
Make assumptions on $ D _ x \quad and \quad \eta $ : } \\
\begin { enumerate}
\item $ \forall X $ drawn from $ D _ x $ \quad $ \max |X _ t| \leq 1 $ \\
Feature values are bounded in $ [ - 1 , 1 ] $ \\
all my points belong to this:$$
X = \left [-1,1\right] ^ d
$$
\item $ \eta $ is such that $ \exists c < \infty $ :\\
$$
\eta (x) - \eta (x') \, \leq \, c \cdot \| X-x' \| \quad \forall \, x,x' \in X
$$
It means that $ \eta $ is \bred { Lipschitz} in $ X $
$ c < \infty \Leftrightarrow $ $ \eta $ is continous\\
\end { enumerate}
\bred { using two facts:} \\
\begin { figure} [h]
\centering
\includegraphics [width=0.6\linewidth] { ../img/lez10-img1.JPG}
\caption { Point (2) - where \quad $ y = cx + q $ \qquad $ y = - cx + q $ }
\end { figure}
$$
\eta (x') \leq \eta (x) + c \, || X-x'|| \quad \longrightarrow \quad \bred { euclidean distance}
$$
$$
1-\eta (x') \leq 1- \eta (x) + c \, ||X-x'||
\\ \\
$$ \
2020-04-12 15:16:55 +02:00
$
2020-04-16 15:48:36 +02:00
X' = X_ { \Pi (s,x)}
2020-04-12 15:16:55 +02:00
$
2020-04-16 15:48:36 +02:00
$$
\eta (X) \cdot \left (1-\eta (x')\right ) + \left (1-\eta (x)\right )\cdot \eta (x') \leq
$$
$$
\leq \eta (x) \cdot ((1-\eta (x))+\eta (x)\cdot c \, ||X-x'|| + (1-\eta (x))\cdot c \, ||X-x'|| =
$$
$$
= 2 \cdot \eta (x) \cdot (1- \eta (x)) + c\, ||X-x'||
$$ \
$$
\barra { E} \left [\ell_d \cdot (\hat{h}_s)\right] \leq
2 \cdot \barra { E} \left [\, \eta(x) - (1-\eta(x))\, \right] + c \cdot \barra (E)\left [\, ||X-x_{\Pi(s,x)}||\, \right]
$$
where $ \leq $ mean at most
\\ \\
\section { Compare risk for zero-one loss}
$$
\barra { E} \left [\, \min\{\eta(x),1-\eta(x)\} \, \right] = \ell _ D (f^ *) $$
$$
\eta (x) \cdot ( 1- \eta (X)) \ \leq \ \min \{ \, \eta (x), 1-\eta (x)\, \} \quad \forall x
$$
$$
\barra { E} \left [\, \eta(x)\cdot(1-\eta(x)\, \right] \ \leq \ \ell _ D(f^ *)
$$
$$
\barra { E} \left [\, \ell_d(\hat{l}_s)\, \right] \leq 2 \cdot \ell _ D(f^ *) + c \cdot \barra { E} \left [\, \|X-X_{\Pi(s,x)}\| \, \right]
2020-04-12 15:16:55 +02:00
\\ \\
2020-04-16 15:48:36 +02:00
\eta (x) \in \{ 0,1\}
$$
\\
Depends on dimension: \bred { curse of dimensionality}
\\
\begin { figure} [h]
\centering
\includegraphics [width=0.6\linewidth] { ../img/lez10-img2.JPG}
\caption { Point}
\end { figure} \\
2020-04-12 15:16:55 +02:00
$
2020-04-16 15:48:36 +02:00
\ell _ d(f^ *) = 0 \iff \min \{ \eta (x), 1-\eta (x)\} =0 \quad $ with probability = 1
2020-04-12 15:16:55 +02:00
\\
2020-04-12 19:35:06 +02:00
to be true $ \eta ( x ) \in \{ 0 , 1 \} $
\end { document}