finish lecture 4

This commit is contained in:
Andreaierardi 2020-04-12 16:29:10 +02:00
parent c829b0fdd0
commit 416b3bad3b
14 changed files with 501 additions and 31 deletions

View File

@ -1,3 +1,6 @@
\documentclass[../main.tex]{subfiles}
\begin{document}
\section{Lecture 2 - 07-04-2020} \section{Lecture 2 - 07-04-2020}
\subsection{Argomento} \subsection{Argomento}
@ -193,3 +196,5 @@ We want to replace this process with a predictor (so we dont have to bored a
person).\\ person).\\
y is the ground truth for x $\rightarrow$ mean reality!\\ y is the ground truth for x $\rightarrow$ mean reality!\\
If i want to predict stock for tomorrow, i will wait tomorrow to see the ground truth. If i want to predict stock for tomorrow, i will wait tomorrow to see the ground truth.
\end{document}

View File

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.21 (MiKTeX 2.9.7300 64-bit) (preloaded format=pdflatex 2020.4.12) 12 APR 2020 15:16 This is pdfTeX, Version 3.14159265-2.6-1.40.21 (MiKTeX 2.9.7300 64-bit) (preloaded format=pdflatex 2020.4.12) 12 APR 2020 15:20
entering extended mode entering extended mode
**./lecture3.tex **./lecture3.tex
(lecture3.tex (lecture3.tex
@ -354,7 +354,7 @@ MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmsy10.pfb><E:/Program Files/MiKTeX 2
type1/public/amsfonts/cm/cmsy8.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/pub type1/public/amsfonts/cm/cmsy8.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/pub
lic/amsfonts/cm/cmti12.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsf lic/amsfonts/cm/cmti12.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsf
onts/symbols/msbm10.pfb> onts/symbols/msbm10.pfb>
Output written on lecture3.pdf (6 pages, 135512 bytes). Output written on lecture3.pdf (6 pages, 135258 bytes).
PDF statistics: PDF statistics:
70 PDF objects out of 1000 (max. 8388607) 70 PDF objects out of 1000 (max. 8388607)
0 named destinations out of 1000 (max. 500000) 0 named destinations out of 1000 (max. 500000)

View File

@ -210,9 +210,9 @@ $\hat{y} = + \quad or \quad \hat{y} = - $
\\\ \\\
I can came up with some sort of classifier. I can came up with some sort of classifier.
\\\\ \\\\
Given $S$ training set, i can define $h_NN X \rightarrow \{-1,1\}\\ Given $S$ training set, i can define $\hnn$ $X \rightarrow \{-1,1\}\\
$ $
$h_NN(x) = $ label $y_t$ of the point $x_t$ in $S$ closest to $X$\\ $\hnn(x) = $ label $y_t$ of the point $x_t$ in $S$ closest to $X$\\
\textbf{(the breaking rule for ties)} \textbf{(the breaking rule for ties)}
\\ \\
For the closest we mean euclidian distance For the closest we mean euclidian distance

View File

@ -0,0 +1,4 @@
\relax
\@writefile{toc}{\contentsline {section}{\numberline {1}Lecture 4 - 07-04-2020}{1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Computing $h_{NN}$}{1}\protected@file@percent }
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Tree Predictor}{2}\protected@file@percent }

View File

@ -0,0 +1,292 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.21 (MiKTeX 2.9.7300 64-bit) (preloaded format=pdflatex 2020.4.12) 12 APR 2020 16:28
entering extended mode
**./lecture4.tex
(lecture4.tex
LaTeX2e <2020-02-02> patch level 2
L3 programming layer <2020-02-14>
("E:\Program Files\MiKTeX 2.9\tex/latex/subfiles\subfiles.cls"
Document Class: subfiles 2020/02/14 v1.6 Multi-file projects (class)
Preamble taken from file `../main.tex'
("E:\Program Files\MiKTeX 2.9\tex/latex/tools\verbatim.sty"
Package: verbatim 2019/11/10 v1.5r LaTeX2e package for verbatim enhancements
\every@verbatim=\toks14
\verbatim@line=\toks15
\verbatim@in@stream=\read2
)
("E:\Program Files\MiKTeX 2.9\tex/latex/import\import.sty"
Package: import 2020/04/01 v 6.2
) (../main.tex
("E:\Program Files\MiKTeX 2.9\tex/latex/base\article.cls"
Document Class: article 2019/12/20 v1.4l Standard LaTeX document class
("E:\Program Files\MiKTeX 2.9\tex/latex/base\size12.clo"
File: size12.clo 2019/12/20 v1.4l Standard LaTeX file (size option)
)
\c@part=\count167
\c@section=\count168
\c@subsection=\count169
\c@subsubsection=\count170
\c@paragraph=\count171
\c@subparagraph=\count172
\c@figure=\count173
\c@table=\count174
\abovecaptionskip=\skip47
\belowcaptionskip=\skip48
\bibindent=\dimen134
)
("E:\Program Files\MiKTeX 2.9\tex/latex/amsmath\amsmath.sty"
Package: amsmath 2020/01/20 v2.17e AMS math features
\@mathmargin=\skip49
For additional information on amsmath, use the `?' option.
("E:\Program Files\MiKTeX 2.9\tex/latex/amsmath\amstext.sty"
Package: amstext 2000/06/29 v2.01 AMS text
("E:\Program Files\MiKTeX 2.9\tex/latex/amsmath\amsgen.sty"
File: amsgen.sty 1999/11/30 v2.0 generic functions
\@emptytoks=\toks16
\ex@=\dimen135
))
("E:\Program Files\MiKTeX 2.9\tex/latex/amsmath\amsbsy.sty"
Package: amsbsy 1999/11/29 v1.2d Bold Symbols
\pmbraise@=\dimen136
)
("E:\Program Files\MiKTeX 2.9\tex/latex/amsmath\amsopn.sty"
Package: amsopn 2016/03/08 v2.02 operator names
)
\inf@bad=\count175
LaTeX Info: Redefining \frac on input line 227.
\uproot@=\count176
\leftroot@=\count177
LaTeX Info: Redefining \overline on input line 389.
\classnum@=\count178
\DOTSCASE@=\count179
LaTeX Info: Redefining \ldots on input line 486.
LaTeX Info: Redefining \dots on input line 489.
LaTeX Info: Redefining \cdots on input line 610.
\Mathstrutbox@=\box45
\strutbox@=\box46
\big@size=\dimen137
LaTeX Font Info: Redeclaring font encoding OML on input line 733.
LaTeX Font Info: Redeclaring font encoding OMS on input line 734.
\macc@depth=\count180
\c@MaxMatrixCols=\count181
\dotsspace@=\muskip16
\c@parentequation=\count182
\dspbrk@lvl=\count183
\tag@help=\toks17
\row@=\count184
\column@=\count185
\maxfields@=\count186
\andhelp@=\toks18
\eqnshift@=\dimen138
\alignsep@=\dimen139
\tagshift@=\dimen140
\tagwidth@=\dimen141
\totwidth@=\dimen142
\lineht@=\dimen143
\@envbody=\toks19
\multlinegap=\skip50
\multlinetaggap=\skip51
\mathdisplay@stack=\toks20
LaTeX Info: Redefining \[ on input line 2859.
LaTeX Info: Redefining \] on input line 2860.
)
("E:\Program Files\MiKTeX 2.9\tex/latex/systeme\systeme.sty"
("E:\Program Files\MiKTeX 2.9\tex/latex/xstring\xstring.sty"
("E:\Program Files\MiKTeX 2.9\tex/generic/xstring\xstring.tex"
\integerpart=\count187
\decimalpart=\count188
)
Package: xstring 2019/02/06 v1.83 String manipulations (CT)
)
("E:\Program Files\MiKTeX 2.9\tex/generic/systeme\systeme.tex"
\SYS_systemecode=\toks21
\SYS_systempreamble=\toks22
\SYSeqnum=\count189
)
Package: systeme 2019/01/13 v0.32 Mise en forme de systemes d'equations (CT)
)
("E:\Program Files\MiKTeX 2.9\tex/latex/amsfonts\amssymb.sty"
Package: amssymb 2013/01/14 v3.01 AMS font symbols
("E:\Program Files\MiKTeX 2.9\tex/latex/amsfonts\amsfonts.sty"
Package: amsfonts 2013/01/14 v3.01 Basic AMSFonts support
\symAMSa=\mathgroup4
\symAMSb=\mathgroup5
LaTeX Font Info: Redeclaring math symbol \hbar on input line 98.
LaTeX Font Info: Overwriting math alphabet `\mathfrak' in version `bold'
(Font) U/euf/m/n --> U/euf/b/n on input line 106.
))
("E:\Program Files\MiKTeX 2.9\tex/latex/subfiles\subfiles.sty"
Package: subfiles 2020/02/14 v1.6 Multi-file projects (package)
)))
("E:\Program Files\MiKTeX 2.9\tex/latex/l3backend\l3backend-pdfmode.def"
File: l3backend-pdfmode.def 2020-02-03 L3 backend support: PDF mode
\l__kernel_color_stack_int=\count190
\l__pdf_internal_box=\box47
)
(lecture4.aux)
\openout1 = `lecture4.aux'.
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 3.
LaTeX Font Info: ... okay on input line 3.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 3.
LaTeX Font Info: ... okay on input line 3.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 3.
LaTeX Font Info: ... okay on input line 3.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 3.
LaTeX Font Info: ... okay on input line 3.
LaTeX Font Info: Checking defaults for TS1/cmr/m/n on input line 3.
LaTeX Font Info: ... okay on input line 3.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 3.
LaTeX Font Info: ... okay on input line 3.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 3.
LaTeX Font Info: ... okay on input line 3.
LaTeX Font Info: Trying to load font information for U+msa on input line 8.
("E:\Program Files\MiKTeX 2.9\tex/latex/amsfonts\umsa.fd"
File: umsa.fd 2013/01/14 v3.01 AMS symbols A
)
LaTeX Font Info: Trying to load font information for U+msb on input line 8.
("E:\Program Files\MiKTeX 2.9\tex/latex/amsfonts\umsb.fd"
File: umsb.fd 2013/01/14 v3.01 AMS symbols B
)
Underfull \hbox (badness 10000) in paragraph at lines 10--14
[]
Underfull \hbox (badness 10000) in paragraph at lines 15--17
[]
Underfull \hbox (badness 10000) in paragraph at lines 19--20
[]
Underfull \hbox (badness 10000) in paragraph at lines 21--39
[]
Underfull \hbox (badness 10000) in paragraph at lines 39--40
[]
[1
{C:/Users/AndreDany/AppData/Local/MiKTeX/2.9/pdftex/config/pdftex.map}]
Underfull \hbox (badness 10000) in paragraph at lines 42--66
[]
Underfull \hbox (badness 10000) in paragraph at lines 42--66
[]
Underfull \hbox (badness 10000) in paragraph at lines 42--66
[]
Underfull \hbox (badness 10000) in paragraph at lines 42--66
[]
Underfull \hbox (badness 10000) in paragraph at lines 68--70
[]
Underfull \hbox (badness 10000) in paragraph at lines 73--88
[]
[2]
Underfull \hbox (badness 10000) in paragraph at lines 93--99
[]
Overfull \hbox (30.99239pt too wide) detected at line 115
\OML/cmm/m/it/12 X \OT1/cmr/m/n/12 = \OMS/cmsy/m/n/12 f\OML/cmm/m/it/12 Sunny;
\OT1/cmr/m/n/12 50%\OML/cmm/m/it/12 ; No\OMS/cmsy/m/n/12 g ! []f\OML/cmm/m/it
/12 outlook:humidity; windy\OMS/cmsy/m/n/12 g
[]
[3]
LaTeX Warning: Command \textquoteright invalid in math mode on input line 163.
Underfull \hbox (badness 10000) in paragraph at lines 142--164
[]
Underfull \hbox (badness 10000) in paragraph at lines 142--164
[]
Underfull \hbox (badness 10000) in paragraph at lines 142--164
[]
Underfull \hbox (badness 10000) in paragraph at lines 142--164
[]
Underfull \hbox (badness 10000) in paragraph at lines 142--164
[]
Underfull \hbox (badness 10000) in paragraph at lines 142--164
[]
Underfull \hbox (badness 10000) in paragraph at lines 142--164
[]
Underfull \hbox (badness 10000) in paragraph at lines 142--164
[]
[4] (lecture4.aux) )
Here is how much of TeX's memory you used:
2047 strings out of 481556
28032 string characters out of 2923622
262310 words of memory out of 3000000
17294 multiletter control sequences out of 15000+200000
542187 words of font info for 61 fonts, out of 3000000 for 9000
1141 hyphenation exceptions out of 8191
42i,8n,44p,316b,125s stack positions out of 5000i,500n,10000p,200000b,50000s
<C:\Users\AndreDany\AppData\Local\MiKTeX\2.9\fonts/pk/ljfo
ur/jknappen/ec/dpi600\tcrm1200.pk><E:/Program Files/MiKTeX 2.9/fonts/type1/publ
ic/amsfonts/cm/cmbx12.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfo
nts/cm/cmex10.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/c
mmi10.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmmi12.pf
b><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmmi8.pfb><E:/Pro
gram Files/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmr12.pfb><E:/Program File
s/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmr8.pfb><E:/Program Files/MiKTeX 2
.9/fonts/type1/public/amsfonts/cm/cmsy10.pfb><E:/Program Files/MiKTeX 2.9/fonts
/type1/public/amsfonts/cm/cmsy8.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/pu
blic/amsfonts/cm/cmti12.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/ams
fonts/symbols/msbm10.pfb>
Output written on lecture4.pdf (4 pages, 125496 bytes).
PDF statistics:
64 PDF objects out of 1000 (max. 8388607)
0 named destinations out of 1000 (max. 500000)
1 words of extra memory for PDF output out of 10000 (max. 10000000)

View File

@ -1 +1,164 @@
\documentclass[../main.tex]{subfiles}
\begin{document}
\section{Lecture 4 - 07-04-2020} \section{Lecture 4 - 07-04-2020}
We spoke about Knn classifier with voronoi diagram
$$
\hat{\ell}(\hnn) = 0 \qquad \forall Traning set
$$
\\
$\hnn$ predictor needs to store entire dataset.
\\
\subsection{Computing $\hnn$}
Computing $\hnn(x)$ requires computing distances between x and points in the traning set.
\\
$$
\Theta(d) \quad \textit{time for each distance}
$$\\
NN $\rightarrow$ 1-NN\\
We can generalise NN in K-NN with $k = 1,3,5,7$ so odd $K$ \\
$\hknn(x)$ = label corresponding to the majority of labels of the k closet point to
x in the training set.\\\\
How big could $K$ be if i have $n$ point?\\
I look at the $k$ closest point\\
When $k = m$?\\
The majority, will be a constant classifier
$\hknn$ is constant and corresponds to the majority of training labels\\
Training error is always 0 for $\hnn$, while for $\hknn$ will be typically $>0$, with $k >
1$\\
Image: one dimensional classifier and training set is repeated.
Is the plot of 1-NN classifier.\\
Positive and negative.
$K = 1$ error is 0.\\
In the second line we switch to $k =3$. Second point doesnt switch and third will
be classify to positive and we have training mistake.\\
Switches corresponds to border of voronoi partition.
$$\knn \qquad \textit{For multiclass classification}$$\\
$$
(|Y| > 2 ) \qquad \textit{for regression } Y\equiv \barra{R}
$$
\\
Average of labels of $K$ neighbours $\rightarrow$ i will get a number with prediction.
\\
I can weight average by distance
\\
You can vary this algorithm as you want.\\\\
Lets go back to Binary classification.\\
The $k$ parameter is the effect of making the structure of classifier more
complex and less complex for small value of $k$.\\\\
--.. DISEGNO ..--
\\
Fix training set and test set\\
Accury as oppose to the error
\\\\
Show a plot. Training error is 0 at $k = 0$.\\
As i go further training error is higher and test error goes down. At some point
after which training and set met and then after that training and test error goes
up (accuracy goes down).\\
If i run algorithm is going to be overfitting: training error and test error is high and also underfitting since testing and training are close and both high.
Trade off point is the point in $x = 23$ (more or less).\\
There are some heuristic to run NN algorithm without value of $k$.
\\\\
\textbf{History}
\begin{itemize}
\item $\knn$: from 1960 $\rightarrow$ $X \equiv \barra{R}^d$
\item Tree predictor: from 1980
\\
\end{itemize}
\subsection{Tree Predictor}
If a give you data not welled defined in a Euclidean space.
\\
$X = X_1 \cdot x \cdot ... \cdot X_d \cdot x$ \qquad Medical Record
\\
$X_1 = \{Male, Female\}$\\
$X_2 = \{Yes, No\}$
\\
so we have different data
\\\\
I want to avoid comparing $x_i$ with $x_j$, $i\neq j $\\
so comparing different feature and we want to compare each feature with
each self. I dont want to mix them up.\\
We can use a tree!
\\
I have 3 features:
\begin{itemize}
\item outlook $= \{sunny, overcast, rain\}$
\item humidity $= \{[0,100]\}$
\item windy $ = \{yes,no\}$
\end{itemize}
... -- DISEGNO -- ...\\\\
Tree is a natural way of doing decision and abstraction of decision process of
one person. It is a good way to deal with categorical variables.\\
What kind of tree we are talking about?\\
Tree has inner node and leaves. Leaves are associated with labels $(Y)$ and
inner nodes are associated with test.
\begin{itemize}
\item Inner node $\rightarrow$ test
\item Leaves $\rightarrow$ label in Y
\end{itemize}
%... -- DISEGNO -- ...
Test if a function $f$ (NOT A PREDICTOR!) \\
Test $ \qquad f_i \, X_i \rightarrow \{1,...,k\}$
\\ where $k$ is the number of children (inner node) to which test is assigned
\\
In a tree predictor we have:
\begin{itemize}
\item Root node
\item Children are ordered(i know the order of each branch that come out from the node)
\end{itemize}
$$
X = \{Sunny, 50\%, No \} \quad \rightarrow \quad \textit{are the parameters for } \{outlook. humidity, windy \}
$$
\\
$
f_i =
\begin{cases}
1, & \mbox{if } x_2 \in [30 \%,60 \% ]
\\
2, & \mbox{if } otherwise \end{cases}
$
\\ where the numbers 1 and 2 are the children
\\
A test is partitioning the range of values of a certain attribute in a number of
elements equal to number of children of of the node to which the test is
assigned.
\\
$h_T(x)$ is always the label of a leaf of T\\
This leaf is the leaf to which $x$ is \textbf{routed}
\\
Data space for this problem (outlook,..) is partitioned in the leaves of the tree.
It wont be like voronoi graph.
How do I build a tree given a training set?
How do i learn a tree predictor given a training set?
\begin{itemize}
\item Decide tree structure (how • many node, leaves ecc..)
\item Decide test on inner nodes
\item Decide labels on leaves
\end{itemize}
We have to do this all together and process will be more dynamic.
For simplicity binary classification and fix two children for each inner node.\\\\
$ Y = \{-1, +1 \}$
\\ $2$ children for each inner node
\\\\
What's the simplest way?\\
Initial tree and correspond to a costant classifier
\\\\
-- DISEGNO --
\\\\
\textbf{Majority of all example}
\\\\
-- DISEGNO --
\\\\
$(x_1, y_1) ... (x_m, y_m)$ \\
$ x_t \in X$ \qquad $ y_t \in \{-1,+1\}$\\
Training set $S = \{ (x,y) \in S$, x is routed to $\ell\}$\\
$S_{\ell}^+$
\\\\
-- DISEGNO --
\\\\
$ S_{\ell}$ and $ S_{\ell}$ are given by the result of the test, not the labels and $\ell$ and $\ell'$.
\end{document}

View File

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.21 (MiKTeX 2.9.7300 64-bit) (preloaded format=pdflatex 2020.4.12) 12 APR 2020 15:12 This is pdfTeX, Version 3.14159265-2.6-1.40.21 (MiKTeX 2.9.7300 64-bit) (preloaded format=pdflatex 2020.4.12) 12 APR 2020 15:21
entering extended mode entering extended mode
**./main.tex **./main.tex
(main.tex (main.tex
@ -177,111 +177,111 @@ Underfull \hbox (badness 10000) in paragraph at lines 99--139
[] []
[4]) [5] (lectures/lecture2.tex [4]) [5] (lectures/lecture2.tex
Underfull \hbox (badness 10000) in paragraph at lines 4--13 Underfull \hbox (badness 10000) in paragraph at lines 7--16
[] []
Underfull \hbox (badness 10000) in paragraph at lines 14--27 Underfull \hbox (badness 10000) in paragraph at lines 17--30
[] []
Underfull \hbox (badness 10000) in paragraph at lines 14--27 Underfull \hbox (badness 10000) in paragraph at lines 17--30
[] []
Underfull \hbox (badness 10000) in paragraph at lines 29--32 Underfull \hbox (badness 10000) in paragraph at lines 32--35
[] []
[6] [6]
Underfull \hbox (badness 10000) in paragraph at lines 46--49 Underfull \hbox (badness 10000) in paragraph at lines 49--52
[] []
Underfull \hbox (badness 10000) in paragraph at lines 46--49 Underfull \hbox (badness 10000) in paragraph at lines 49--52
[] []
Underfull \hbox (badness 10000) in paragraph at lines 60--78 Underfull \hbox (badness 10000) in paragraph at lines 63--81
[] []
[7] [7]
Underfull \hbox (badness 10000) in paragraph at lines 78--83 Underfull \hbox (badness 10000) in paragraph at lines 81--86
[] []
Underfull \hbox (badness 10000) in paragraph at lines 86--106 Underfull \hbox (badness 10000) in paragraph at lines 89--109
[] []
Underfull \hbox (badness 10000) in paragraph at lines 86--106 Underfull \hbox (badness 10000) in paragraph at lines 89--109
[] []
Underfull \hbox (badness 10000) in paragraph at lines 86--106 Underfull \hbox (badness 10000) in paragraph at lines 89--109
[] []
Underfull \hbox (badness 10000) in paragraph at lines 107--112 Underfull \hbox (badness 10000) in paragraph at lines 110--115
[] []
[8] [8]
Underfull \hbox (badness 10000) in paragraph at lines 115--153 Underfull \hbox (badness 10000) in paragraph at lines 118--156
[] []
Underfull \hbox (badness 10000) in paragraph at lines 115--153 Underfull \hbox (badness 10000) in paragraph at lines 118--156
[] []
Underfull \hbox (badness 10000) in paragraph at lines 115--153 Underfull \hbox (badness 10000) in paragraph at lines 118--156
[] []
Underfull \hbox (badness 10000) in paragraph at lines 115--153 Underfull \hbox (badness 10000) in paragraph at lines 118--156
[] []
Underfull \hbox (badness 10000) in paragraph at lines 115--153 Underfull \hbox (badness 10000) in paragraph at lines 118--156
[] []
Underfull \hbox (badness 10000) in paragraph at lines 115--153 Underfull \hbox (badness 10000) in paragraph at lines 118--156
[] []
[9] [9]
Underfull \hbox (badness 10000) in paragraph at lines 161--168 Underfull \hbox (badness 10000) in paragraph at lines 164--171
[] []
[10] [10]
Underfull \hbox (badness 10000) in paragraph at lines 169--179 Underfull \hbox (badness 10000) in paragraph at lines 172--182
[] []
)
Underfull \hbox (badness 10000) in paragraph at lines 186--33 Underfull \hbox (badness 10000) in paragraph at lines 189--199
[] []
[11] (lectures/lecture3.tex ) [11] (lectures/lecture3.tex
Underfull \hbox (badness 10000) in paragraph at lines 5--7 Underfull \hbox (badness 10000) in paragraph at lines 5--7
[] []
@ -457,7 +457,12 @@ Underfull \hbox (badness 10000) in paragraph at lines 187--223
[] []
[16]) [17] (lectures/lecture4.tex) [18] (lectures/lecture5.tex) [19] [16]
Underfull \hbox (badness 10000) in paragraph at lines 225--226
[]
) [17] (lectures/lecture4.tex) [18] (lectures/lecture5.tex) [19]
(lectures/lecture6.tex) [20] (lectures/lecture7.tex) [21] (lectures/lecture6.tex) [20] (lectures/lecture7.tex) [21]
(lectures/lecture8.tex) [22] (lectures/lecture9.tex) [23] (lectures/lecture8.tex) [22] (lectures/lecture9.tex) [23]
(lectures/lecture10.tex (lectures/lecture10.tex
@ -561,7 +566,7 @@ c/amsfonts/cm/cmsy6.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfont
s/cm/cmsy8.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmti s/cm/cmsy8.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfonts/cm/cmti
12.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfonts/symbols/msbm10. 12.pfb><E:/Program Files/MiKTeX 2.9/fonts/type1/public/amsfonts/symbols/msbm10.
pfb> pfb>
Output written on main.pdf (27 pages, 198551 bytes). Output written on main.pdf (27 pages, 198691 bytes).
PDF statistics: PDF statistics:
146 PDF objects out of 1000 (max. 8388607) 146 PDF objects out of 1000 (max. 8388607)
0 named destinations out of 1000 (max. 500000) 0 named destinations out of 1000 (max. 500000)

View File

@ -15,7 +15,8 @@
\newcommand\barra[1]{\mathbb{#1}} \newcommand\barra[1]{\mathbb{#1}}
\newcommand\hnn{h_{NN}} \newcommand\hnn{h_{NN}}
\newcommand\hknn{h_{k-NN}}
\newcommand\knn{K_{NN}}
\begin{document} \begin{document}
\maketitle \maketitle