From 4a8ad0ff76d17fde545d9aefee097b857c113de1 Mon Sep 17 00:00:00 2001 From: Andrea Ierardi Date: Sun, 1 Mar 2020 22:50:58 +0100 Subject: [PATCH] test --- .../COVID-19 Analysis-checkpoint.ipynb | 10514 +++++++++++++++- .../Python/COVID-19 Analysis.ipynb | 2200 +++- 2 files changed, 12343 insertions(+), 371 deletions(-) diff --git a/1anno/2trimestre/Coding for DataScience/Python/.ipynb_checkpoints/COVID-19 Analysis-checkpoint.ipynb b/1anno/2trimestre/Coding for DataScience/Python/.ipynb_checkpoints/COVID-19 Analysis-checkpoint.ipynb index e63aa5817..22197c9ab 100644 --- a/1anno/2trimestre/Coding for DataScience/Python/.ipynb_checkpoints/COVID-19 Analysis-checkpoint.ipynb +++ b/1anno/2trimestre/Coding for DataScience/Python/.ipynb_checkpoints/COVID-19 Analysis-checkpoint.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 353, + "execution_count": 98, "metadata": {}, "outputs": [ { @@ -59,7 +59,7 @@ " \n", " \n", " \n", - " count\n", + " count\n", " 119.000000\n", " 119.000000\n", " 119.000000\n", @@ -83,7 +83,7 @@ " 119.000000\n", " \n", " \n", - " mean\n", + " mean\n", " 32.195406\n", " 40.126887\n", " 4.663866\n", @@ -107,7 +107,7 @@ " 722.798319\n", " \n", " \n", - " std\n", + " std\n", " 20.305522\n", " 85.839690\n", " 40.731714\n", @@ -131,7 +131,7 @@ " 6079.237047\n", " \n", " \n", - " min\n", + " min\n", " -40.900600\n", " -123.869500\n", " 0.000000\n", @@ -155,7 +155,7 @@ " 0.000000\n", " \n", " \n", - " 25%\n", + " 25%\n", " 26.447150\n", " 3.000000\n", " 0.000000\n", @@ -179,7 +179,7 @@ " 1.000000\n", " \n", " \n", - " 50%\n", + " 50%\n", " 35.443700\n", " 53.000000\n", " 0.000000\n", @@ -203,7 +203,7 @@ " 7.000000\n", " \n", " \n", - " 75%\n", + " 75%\n", " 43.659650\n", " 113.487200\n", " 0.000000\n", @@ -227,7 +227,7 @@ " 101.000000\n", " \n", " \n", - " max\n", + " max\n", " 64.963100\n", " 174.886000\n", " 444.000000\n", @@ -299,7 +299,7 @@ "[8 rows x 41 columns]" ] }, - "execution_count": 353, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -313,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 354, + "execution_count": 99, "metadata": {}, "outputs": [ { @@ -362,10 +362,10 @@ " \n", " \n", " \n", - " 0\n", + " 0\n", " Anhui\n", " Mainland China\n", - " 31.8257\n", + " 31.82570\n", " 117.2264\n", " 1\n", " 9\n", @@ -386,10 +386,10 @@ " 990\n", " \n", " \n", - " 1\n", + " 1\n", " Beijing\n", " Mainland China\n", - " 40.1824\n", + " 40.18240\n", " 116.4142\n", " 14\n", " 22\n", @@ -410,10 +410,10 @@ " 411\n", " \n", " \n", - " 2\n", + " 2\n", " Chongqing\n", " Mainland China\n", - " 30.0572\n", + " 30.05720\n", " 107.8740\n", " 6\n", " 9\n", @@ -434,10 +434,10 @@ " 576\n", " \n", " \n", - " 3\n", + " 3\n", " Fujian\n", " Mainland China\n", - " 26.0789\n", + " 26.07890\n", " 117.9874\n", " 1\n", " 5\n", @@ -458,10 +458,10 @@ " 296\n", " \n", " \n", - " 4\n", + " 4\n", " Gansu\n", " Mainland China\n", - " 36.0611\n", + " 36.06110\n", " 103.8343\n", " 0\n", " 2\n", @@ -482,7 +482,607 @@ " 91\n", " \n", " \n", + " 5\n", + " Guangdong\n", + " Mainland China\n", + " 23.34170\n", + " 113.4244\n", + " 26\n", + " 32\n", + " 53\n", + " 78\n", + " 111\n", + " 151\n", " ...\n", + " 1332\n", + " 1333\n", + " 1339\n", + " 1342\n", + " 1345\n", + " 1347\n", + " 1347\n", + " 1347\n", + " 1348\n", + " 1349\n", + " \n", + " \n", + " 6\n", + " Guangxi\n", + " Mainland China\n", + " 23.82980\n", + " 108.7881\n", + " 2\n", + " 5\n", + " 23\n", + " 23\n", + " 36\n", + " 46\n", + " ...\n", + " 245\n", + " 246\n", + " 249\n", + " 249\n", + " 251\n", + " 252\n", + " 252\n", + " 252\n", + " 252\n", + " 252\n", + " \n", + " \n", + " 7\n", + " Guizhou\n", + " Mainland China\n", + " 26.81540\n", + " 106.8748\n", + " 1\n", + " 3\n", + " 3\n", + " 4\n", + " 5\n", + " 7\n", + " ...\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " \n", + " \n", + " 8\n", + " Hainan\n", + " Mainland China\n", + " 19.19590\n", + " 109.7453\n", + " 4\n", + " 5\n", + " 8\n", + " 19\n", + " 22\n", + " 33\n", + " ...\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " \n", + " \n", + " 9\n", + " Hebei\n", + " Mainland China\n", + " 38.04280\n", + " 114.5149\n", + " 1\n", + " 1\n", + " 2\n", + " 8\n", + " 13\n", + " 18\n", + " ...\n", + " 307\n", + " 308\n", + " 309\n", + " 311\n", + " 311\n", + " 311\n", + " 312\n", + " 317\n", + " 318\n", + " 318\n", + " \n", + " \n", + " 10\n", + " Heilongjiang\n", + " Mainland China\n", + " 47.86200\n", + " 127.7615\n", + " 0\n", + " 2\n", + " 4\n", + " 9\n", + " 15\n", + " 21\n", + " ...\n", + " 476\n", + " 479\n", + " 479\n", + " 480\n", + " 480\n", + " 480\n", + " 480\n", + " 480\n", + " 480\n", + " 480\n", + " \n", + " \n", + " 11\n", + " Henan\n", + " Mainland China\n", + " 33.88202\n", + " 113.6140\n", + " 5\n", + " 5\n", + " 9\n", + " 32\n", + " 83\n", + " 128\n", + " ...\n", + " 1265\n", + " 1267\n", + " 1270\n", + " 1271\n", + " 1271\n", + " 1271\n", + " 1271\n", + " 1272\n", + " 1272\n", + " 1272\n", + " \n", + " \n", + " 12\n", + " Hubei\n", + " Mainland China\n", + " 30.97560\n", + " 112.2707\n", + " 444\n", + " 444\n", + " 549\n", + " 761\n", + " 1058\n", + " 1423\n", + " ...\n", + " 62442\n", + " 62662\n", + " 64084\n", + " 64084\n", + " 64287\n", + " 64786\n", + " 65187\n", + " 65596\n", + " 65914\n", + " 66337\n", + " \n", + " \n", + " 13\n", + " Hunan\n", + " Mainland China\n", + " 27.61040\n", + " 111.7088\n", + " 4\n", + " 9\n", + " 24\n", + " 43\n", + " 69\n", + " 100\n", + " ...\n", + " 1010\n", + " 1011\n", + " 1013\n", + " 1016\n", + " 1016\n", + " 1016\n", + " 1016\n", + " 1017\n", + " 1017\n", + " 1018\n", + " \n", + " \n", + " 14\n", + " Inner Mongolia\n", + " Mainland China\n", + " 44.09350\n", + " 113.9448\n", + " 0\n", + " 0\n", + " 1\n", + " 7\n", + " 7\n", + " 11\n", + " ...\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " \n", + " \n", + " 15\n", + " Jiangsu\n", + " Mainland China\n", + " 32.97110\n", + " 119.4550\n", + " 1\n", + " 5\n", + " 9\n", + " 18\n", + " 33\n", + " 47\n", + " ...\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " \n", + " \n", + " 16\n", + " Jiangxi\n", + " Mainland China\n", + " 27.61400\n", + " 115.7221\n", + " 2\n", + " 7\n", + " 18\n", + " 18\n", + " 36\n", + " 72\n", + " ...\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 935\n", + " 935\n", + " \n", + " \n", + " 17\n", + " Jilin\n", + " Mainland China\n", + " 43.66610\n", + " 126.1923\n", + " 0\n", + " 1\n", + " 3\n", + " 4\n", + " 4\n", + " 6\n", + " ...\n", + " 91\n", + " 91\n", + " 91\n", + " 91\n", + " 93\n", + " 93\n", + " 93\n", + " 93\n", + " 93\n", + " 93\n", + " \n", + " \n", + " 18\n", + " Liaoning\n", + " Mainland China\n", + " 41.29560\n", + " 122.6085\n", + " 2\n", + " 3\n", + " 4\n", + " 17\n", + " 21\n", + " 27\n", + " ...\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " \n", + " \n", + " 19\n", + " Ningxia\n", + " Mainland China\n", + " 37.26920\n", + " 106.1655\n", + " 1\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 7\n", + " ...\n", + " 71\n", + " 71\n", + " 71\n", + " 71\n", + " 71\n", + " 71\n", + " 71\n", + " 72\n", + " 72\n", + " 73\n", + " \n", + " \n", + " 20\n", + " Qinghai\n", + " Mainland China\n", + " 35.74520\n", + " 95.9956\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 6\n", + " ...\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " \n", + " \n", + " 21\n", + " Shaanxi\n", + " Mainland China\n", + " 35.19170\n", + " 108.8701\n", + " 0\n", + " 3\n", + " 5\n", + " 15\n", + " 22\n", + " 35\n", + " ...\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " \n", + " \n", + " 22\n", + " Shandong\n", + " Mainland China\n", + " 36.34270\n", + " 118.1498\n", + " 2\n", + " 6\n", + " 15\n", + " 27\n", + " 46\n", + " 75\n", + " ...\n", + " 546\n", + " 749\n", + " 750\n", + " 754\n", + " 755\n", + " 756\n", + " 756\n", + " 756\n", + " 756\n", + " 756\n", + " \n", + " \n", + " 23\n", + " Shanghai\n", + " Mainland China\n", + " 31.20200\n", + " 121.4491\n", + " 9\n", + " 16\n", + " 20\n", + " 33\n", + " 40\n", + " 53\n", + " ...\n", + " 334\n", + " 334\n", + " 335\n", + " 335\n", + " 335\n", + " 336\n", + " 337\n", + " 337\n", + " 337\n", + " 337\n", + " \n", + " \n", + " 24\n", + " Shanxi\n", + " Mainland China\n", + " 37.57770\n", + " 112.2922\n", + " 1\n", + " 1\n", + " 1\n", + " 6\n", + " 9\n", + " 13\n", + " ...\n", + " 132\n", + " 132\n", + " 132\n", + " 132\n", + " 133\n", + " 133\n", + " 133\n", + " 133\n", + " 133\n", + " 133\n", + " \n", + " \n", + " 25\n", + " Sichuan\n", + " Mainland China\n", + " 30.61710\n", + " 102.7103\n", + " 5\n", + " 8\n", + " 15\n", + " 28\n", + " 44\n", + " 69\n", + " ...\n", + " 520\n", + " 525\n", + " 526\n", + " 526\n", + " 527\n", + " 529\n", + " 531\n", + " 534\n", + " 538\n", + " 538\n", + " \n", + " \n", + " 26\n", + " Tianjin\n", + " Mainland China\n", + " 39.30540\n", + " 117.3230\n", + " 4\n", + " 4\n", + " 8\n", + " 10\n", + " 14\n", + " 23\n", + " ...\n", + " 131\n", + " 132\n", + " 135\n", + " 135\n", + " 135\n", + " 135\n", + " 135\n", + " 136\n", + " 136\n", + " 136\n", + " \n", + " \n", + " 27\n", + " Tibet\n", + " Mainland China\n", + " 31.69270\n", + " 88.0924\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 28\n", + " Xinjiang\n", + " Mainland China\n", + " 41.11290\n", + " 85.2401\n", + " 0\n", + " 2\n", + " 2\n", + " 3\n", + " 4\n", + " 5\n", + " ...\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " \n", + " \n", + " 29\n", + " Yunnan\n", + " Mainland China\n", + " 24.97400\n", + " 101.4870\n", + " 1\n", + " 2\n", + " 5\n", + " 11\n", + " 16\n", + " 26\n", + " ...\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " \n", + " \n", + " ...\n", " ...\n", " ...\n", " ...\n", @@ -506,10 +1106,610 @@ " ...\n", " \n", " \n", - " 114\n", + " 89\n", + " NaN\n", + " Algeria\n", + " 28.03390\n", + " 1.6596\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 90\n", + " NaN\n", + " Croatia\n", + " 45.10000\n", + " 15.2000\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 3\n", + " 3\n", + " 5\n", + " 6\n", + " \n", + " \n", + " 91\n", + " NaN\n", + " Switzerland\n", + " 46.81820\n", + " 8.2275\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 8\n", + " 8\n", + " 18\n", + " \n", + " \n", + " 92\n", + " NaN\n", + " Austria\n", + " 47.51620\n", + " 14.5501\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 2\n", + " 2\n", + " 3\n", + " 3\n", + " 9\n", + " \n", + " \n", + " 93\n", + " NaN\n", + " Israel\n", + " 31.00000\n", + " 35.0000\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 7\n", + " \n", + " \n", + " 94\n", + " NaN\n", + " Pakistan\n", + " 30.37530\n", + " 69.3451\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 2\n", + " 2\n", + " 2\n", + " 4\n", + " \n", + " \n", + " 95\n", + " NaN\n", + " Brazil\n", + " -14.23500\n", + " -51.9253\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " \n", + " \n", + " 96\n", + " NaN\n", + " Georgia\n", + " 42.31540\n", + " 43.3569\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 97\n", + " NaN\n", + " Greece\n", + " 39.07420\n", + " 21.8243\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 3\n", + " 4\n", + " 4\n", + " \n", + " \n", + " 98\n", + " NaN\n", + " North Macedonia\n", + " 41.60860\n", + " 21.7453\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 99\n", + " NaN\n", + " Norway\n", + " 60.47200\n", + " 8.4689\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 6\n", + " 15\n", + " \n", + " \n", + " 100\n", + " NaN\n", + " Romania\n", + " 45.94320\n", + " 24.9668\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 3\n", + " 3\n", + " \n", + " \n", + " 101\n", + " NaN\n", + " Denmark\n", + " 56.26390\n", + " 9.5018\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 3\n", + " \n", + " \n", + " 102\n", + " NaN\n", + " Estonia\n", + " 58.59530\n", + " 25.0136\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 103\n", + " NaN\n", + " Netherlands\n", + " 52.13260\n", + " 5.2913\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 6\n", + " \n", + " \n", + " 104\n", + " NaN\n", + " San Marino\n", + " 43.94240\n", + " 12.4578\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 105\n", + " NaN\n", + " Belarus\n", + " 53.70980\n", + " 27.9534\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 106\n", + " Montreal, QC\n", + " Canada\n", + " 45.50170\n", + " -73.5673\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 107\n", + " NaN\n", + " Iceland\n", + " 64.96310\n", + " -19.0208\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 108\n", + " NaN\n", + " Lithuania\n", + " 55.16940\n", + " 23.8813\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 109\n", + " NaN\n", + " Mexico\n", + " 23.63450\n", + " -102.5528\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 4\n", + " \n", + " \n", + " 110\n", + " NaN\n", + " New Zealand\n", + " -40.90060\n", + " 174.8860\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 111\n", + " NaN\n", + " Nigeria\n", + " 9.08200\n", + " 8.6753\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 112\n", + " Western Australia\n", + " Australia\n", + " -31.95050\n", + " 115.8605\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 2\n", + " \n", + " \n", + " 113\n", + " NaN\n", + " Ireland\n", + " 53.14240\n", + " -7.6921\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " \n", + " \n", + " 114\n", " NaN\n", " Luxembourg\n", - " 49.8153\n", + " 49.81530\n", " 6.1296\n", " 0\n", " 0\n", @@ -530,10 +1730,10 @@ " 1\n", " \n", " \n", - " 115\n", + " 115\n", " NaN\n", " Monaco\n", - " 43.7333\n", + " 43.73330\n", " 7.4167\n", " 0\n", " 0\n", @@ -554,10 +1754,10 @@ " 1\n", " \n", " \n", - " 116\n", + " 116\n", " NaN\n", " Qatar\n", - " 25.3548\n", + " 25.35480\n", " 51.1839\n", " 0\n", " 0\n", @@ -578,10 +1778,10 @@ " 1\n", " \n", " \n", - " 117\n", + " 117\n", " Portland, OR\n", " US\n", - " 45.5051\n", + " 45.50510\n", " -122.6750\n", " 0\n", " 0\n", @@ -602,10 +1802,10 @@ " 1\n", " \n", " \n", - " 118\n", + " 118\n", " Snohomish County, WA\n", " US\n", - " 48.0330\n", + " 48.03300\n", " -121.8339\n", " 0\n", " 0\n", @@ -631,18 +1831,68 @@ "" ], "text/plain": [ - " Province/State Country/Region Lat Long 1/22/20 \\\n", - "0 Anhui Mainland China 31.8257 117.2264 1 \n", - "1 Beijing Mainland China 40.1824 116.4142 14 \n", - "2 Chongqing Mainland China 30.0572 107.8740 6 \n", - "3 Fujian Mainland China 26.0789 117.9874 1 \n", - "4 Gansu Mainland China 36.0611 103.8343 0 \n", - ".. ... ... ... ... ... \n", - "114 NaN Luxembourg 49.8153 6.1296 0 \n", - "115 NaN Monaco 43.7333 7.4167 0 \n", - "116 NaN Qatar 25.3548 51.1839 0 \n", - "117 Portland, OR US 45.5051 -122.6750 0 \n", - "118 Snohomish County, WA US 48.0330 -121.8339 0 \n", + " Province/State Country/Region Lat Long 1/22/20 \\\n", + "0 Anhui Mainland China 31.82570 117.2264 1 \n", + "1 Beijing Mainland China 40.18240 116.4142 14 \n", + "2 Chongqing Mainland China 30.05720 107.8740 6 \n", + "3 Fujian Mainland China 26.07890 117.9874 1 \n", + "4 Gansu Mainland China 36.06110 103.8343 0 \n", + "5 Guangdong Mainland China 23.34170 113.4244 26 \n", + "6 Guangxi Mainland China 23.82980 108.7881 2 \n", + "7 Guizhou Mainland China 26.81540 106.8748 1 \n", + "8 Hainan Mainland China 19.19590 109.7453 4 \n", + "9 Hebei Mainland China 38.04280 114.5149 1 \n", + "10 Heilongjiang Mainland China 47.86200 127.7615 0 \n", + "11 Henan Mainland China 33.88202 113.6140 5 \n", + "12 Hubei Mainland China 30.97560 112.2707 444 \n", + "13 Hunan Mainland China 27.61040 111.7088 4 \n", + "14 Inner Mongolia Mainland China 44.09350 113.9448 0 \n", + "15 Jiangsu Mainland China 32.97110 119.4550 1 \n", + "16 Jiangxi Mainland China 27.61400 115.7221 2 \n", + "17 Jilin Mainland China 43.66610 126.1923 0 \n", + "18 Liaoning Mainland China 41.29560 122.6085 2 \n", + "19 Ningxia Mainland China 37.26920 106.1655 1 \n", + "20 Qinghai Mainland China 35.74520 95.9956 0 \n", + "21 Shaanxi Mainland China 35.19170 108.8701 0 \n", + "22 Shandong Mainland China 36.34270 118.1498 2 \n", + "23 Shanghai Mainland China 31.20200 121.4491 9 \n", + "24 Shanxi Mainland China 37.57770 112.2922 1 \n", + "25 Sichuan Mainland China 30.61710 102.7103 5 \n", + "26 Tianjin Mainland China 39.30540 117.3230 4 \n", + "27 Tibet Mainland China 31.69270 88.0924 0 \n", + "28 Xinjiang Mainland China 41.11290 85.2401 0 \n", + "29 Yunnan Mainland China 24.97400 101.4870 1 \n", + ".. ... ... ... ... ... \n", + "89 NaN Algeria 28.03390 1.6596 0 \n", + "90 NaN Croatia 45.10000 15.2000 0 \n", + "91 NaN Switzerland 46.81820 8.2275 0 \n", + "92 NaN Austria 47.51620 14.5501 0 \n", + "93 NaN Israel 31.00000 35.0000 0 \n", + "94 NaN Pakistan 30.37530 69.3451 0 \n", + "95 NaN Brazil -14.23500 -51.9253 0 \n", + "96 NaN Georgia 42.31540 43.3569 0 \n", + "97 NaN Greece 39.07420 21.8243 0 \n", + "98 NaN North Macedonia 41.60860 21.7453 0 \n", + "99 NaN Norway 60.47200 8.4689 0 \n", + "100 NaN Romania 45.94320 24.9668 0 \n", + "101 NaN Denmark 56.26390 9.5018 0 \n", + "102 NaN Estonia 58.59530 25.0136 0 \n", + "103 NaN Netherlands 52.13260 5.2913 0 \n", + "104 NaN San Marino 43.94240 12.4578 0 \n", + "105 NaN Belarus 53.70980 27.9534 0 \n", + "106 Montreal, QC Canada 45.50170 -73.5673 0 \n", + "107 NaN Iceland 64.96310 -19.0208 0 \n", + "108 NaN Lithuania 55.16940 23.8813 0 \n", + "109 NaN Mexico 23.63450 -102.5528 0 \n", + "110 NaN New Zealand -40.90060 174.8860 0 \n", + "111 NaN Nigeria 9.08200 8.6753 0 \n", + "112 Western Australia Australia -31.95050 115.8605 0 \n", + "113 NaN Ireland 53.14240 -7.6921 0 \n", + "114 NaN Luxembourg 49.81530 6.1296 0 \n", + "115 NaN Monaco 43.73330 7.4167 0 \n", + "116 NaN Qatar 25.35480 51.1839 0 \n", + "117 Portland, OR US 45.50510 -122.6750 0 \n", + "118 Snohomish County, WA US 48.03300 -121.8339 0 \n", "\n", " 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 ... 2/20/20 2/21/20 \\\n", "0 9 15 39 60 70 ... 987 988 \n", @@ -650,7 +1900,57 @@ "2 9 27 57 75 110 ... 567 572 \n", "3 5 10 18 35 59 ... 293 293 \n", "4 2 2 4 7 14 ... 91 91 \n", + "5 32 53 78 111 151 ... 1332 1333 \n", + "6 5 23 23 36 46 ... 245 246 \n", + "7 3 3 4 5 7 ... 146 146 \n", + "8 5 8 19 22 33 ... 168 168 \n", + "9 1 2 8 13 18 ... 307 308 \n", + "10 2 4 9 15 21 ... 476 479 \n", + "11 5 9 32 83 128 ... 1265 1267 \n", + "12 444 549 761 1058 1423 ... 62442 62662 \n", + "13 9 24 43 69 100 ... 1010 1011 \n", + "14 0 1 7 7 11 ... 75 75 \n", + "15 5 9 18 33 47 ... 631 631 \n", + "16 7 18 18 36 72 ... 934 934 \n", + "17 1 3 4 4 6 ... 91 91 \n", + "18 3 4 17 21 27 ... 121 121 \n", + "19 1 2 3 4 7 ... 71 71 \n", + "20 0 0 1 1 6 ... 18 18 \n", + "21 3 5 15 22 35 ... 245 245 \n", + "22 6 15 27 46 75 ... 546 749 \n", + "23 16 20 33 40 53 ... 334 334 \n", + "24 1 1 6 9 13 ... 132 132 \n", + "25 8 15 28 44 69 ... 520 525 \n", + "26 4 8 10 14 23 ... 131 132 \n", + "27 0 0 0 0 0 ... 1 1 \n", + "28 2 2 3 4 5 ... 76 76 \n", + "29 2 5 11 16 26 ... 174 174 \n", ".. ... ... ... ... ... ... ... ... \n", + "89 0 0 0 0 0 ... 0 0 \n", + "90 0 0 0 0 0 ... 0 0 \n", + "91 0 0 0 0 0 ... 0 0 \n", + "92 0 0 0 0 0 ... 0 0 \n", + "93 0 0 0 0 0 ... 0 1 \n", + "94 0 0 0 0 0 ... 0 0 \n", + "95 0 0 0 0 0 ... 0 0 \n", + "96 0 0 0 0 0 ... 0 0 \n", + "97 0 0 0 0 0 ... 0 0 \n", + "98 0 0 0 0 0 ... 0 0 \n", + "99 0 0 0 0 0 ... 0 0 \n", + "100 0 0 0 0 0 ... 0 0 \n", + "101 0 0 0 0 0 ... 0 0 \n", + "102 0 0 0 0 0 ... 0 0 \n", + "103 0 0 0 0 0 ... 0 0 \n", + "104 0 0 0 0 0 ... 0 0 \n", + "105 0 0 0 0 0 ... 0 0 \n", + "106 0 0 0 0 0 ... 0 0 \n", + "107 0 0 0 0 0 ... 0 0 \n", + "108 0 0 0 0 0 ... 0 0 \n", + "109 0 0 0 0 0 ... 0 0 \n", + "110 0 0 0 0 0 ... 0 0 \n", + "111 0 0 0 0 0 ... 0 0 \n", + "112 0 0 0 0 0 ... 0 0 \n", + "113 0 0 0 0 0 ... 0 0 \n", "114 0 0 0 0 0 ... 0 0 \n", "115 0 0 0 0 0 ... 0 0 \n", "116 0 0 0 0 0 ... 0 0 \n", @@ -663,7 +1963,57 @@ "2 573 575 576 576 576 576 576 576 \n", "3 293 293 293 294 294 296 296 296 \n", "4 91 91 91 91 91 91 91 91 \n", + "5 1339 1342 1345 1347 1347 1347 1348 1349 \n", + "6 249 249 251 252 252 252 252 252 \n", + "7 146 146 146 146 146 146 146 146 \n", + "8 168 168 168 168 168 168 168 168 \n", + "9 309 311 311 311 312 317 318 318 \n", + "10 479 480 480 480 480 480 480 480 \n", + "11 1270 1271 1271 1271 1271 1272 1272 1272 \n", + "12 64084 64084 64287 64786 65187 65596 65914 66337 \n", + "13 1013 1016 1016 1016 1016 1017 1017 1018 \n", + "14 75 75 75 75 75 75 75 75 \n", + "15 631 631 631 631 631 631 631 631 \n", + "16 934 934 934 934 934 934 935 935 \n", + "17 91 91 93 93 93 93 93 93 \n", + "18 121 121 121 121 121 121 121 121 \n", + "19 71 71 71 71 71 72 72 73 \n", + "20 18 18 18 18 18 18 18 18 \n", + "21 245 245 245 245 245 245 245 245 \n", + "22 750 754 755 756 756 756 756 756 \n", + "23 335 335 335 336 337 337 337 337 \n", + "24 132 132 133 133 133 133 133 133 \n", + "25 526 526 527 529 531 534 538 538 \n", + "26 135 135 135 135 135 136 136 136 \n", + "27 1 1 1 1 1 1 1 1 \n", + "28 76 76 76 76 76 76 76 76 \n", + "29 174 174 174 174 174 174 174 174 \n", ".. ... ... ... ... ... ... ... ... \n", + "89 0 0 0 1 1 1 1 1 \n", + "90 0 0 0 1 3 3 5 6 \n", + "91 0 0 0 1 1 8 8 18 \n", + "92 0 0 0 2 2 3 3 9 \n", + "93 1 1 1 1 2 3 4 7 \n", + "94 0 0 0 0 2 2 2 4 \n", + "95 0 0 0 0 1 1 1 2 \n", + "96 0 0 0 0 1 1 1 1 \n", + "97 0 0 0 0 1 3 4 4 \n", + "98 0 0 0 0 1 1 1 1 \n", + "99 0 0 0 0 1 1 6 15 \n", + "100 0 0 0 0 1 1 3 3 \n", + "101 0 0 0 0 0 1 1 3 \n", + "102 0 0 0 0 0 1 1 1 \n", + "103 0 0 0 0 0 1 1 6 \n", + "104 0 0 0 0 0 1 1 1 \n", + "105 0 0 0 0 0 0 1 1 \n", + "106 0 0 0 0 0 0 1 1 \n", + "107 0 0 0 0 0 0 1 1 \n", + "108 0 0 0 0 0 0 1 1 \n", + "109 0 0 0 0 0 0 1 4 \n", + "110 0 0 0 0 0 0 1 1 \n", + "111 0 0 0 0 0 0 1 1 \n", + "112 0 0 0 0 0 0 0 2 \n", + "113 0 0 0 0 0 0 0 1 \n", "114 0 0 0 0 0 0 0 1 \n", "115 0 0 0 0 0 0 0 1 \n", "116 0 0 0 0 0 0 0 1 \n", @@ -673,7 +2023,7 @@ "[119 rows x 43 columns]" ] }, - "execution_count": 354, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -684,7 +2034,7 @@ }, { "cell_type": "code", - "execution_count": 355, + "execution_count": 100, "metadata": {}, "outputs": [ { @@ -731,7 +2081,7 @@ " 1128]" ] }, - "execution_count": 355, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } @@ -749,7 +2099,7 @@ }, { "cell_type": "code", - "execution_count": 356, + "execution_count": 101, "metadata": {}, "outputs": [], "source": [ @@ -769,7 +2119,7 @@ }, { "cell_type": "code", - "execution_count": 357, + "execution_count": 102, "metadata": {}, "outputs": [ { @@ -800,31 +2150,31 @@ " \n", " \n", " \n", - " 0\n", + " 0\n", " 1/22/20\n", " 0\n", " 1\n", " \n", " \n", - " 1\n", + " 1\n", " 1/23/20\n", " 0\n", " 2\n", " \n", " \n", - " 2\n", + " 2\n", " 1/24/20\n", " 0\n", " 3\n", " \n", " \n", - " 3\n", + " 3\n", " 1/25/20\n", " 0\n", " 4\n", " \n", " \n", - " 4\n", + " 4\n", " 1/26/20\n", " 0\n", " 5\n", @@ -842,7 +2192,7 @@ "4 1/26/20 0 5" ] }, - "execution_count": 357, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -853,7 +2203,7 @@ }, { "cell_type": "code", - "execution_count": 358, + "execution_count": 103, "metadata": {}, "outputs": [ { @@ -1989,20 +3339,20 @@ "
\n", " \n", " \n", - "
\n", + "
\n", " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import plotly.express as px\n", + "fig = px.scatter(df_china, x=\"Lags\", y = \"Values\", color=\"Cities\", trendline=\"ols\")\n", + "fig.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Hubei Linear regression" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "Lags=%{x}
Values=%{y}", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "markers", + "name": "", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38 + ], + "xaxis": "x", + "y": [ + 444, + 444, + 549, + 761, + 1058, + 1423, + 3554, + 3554, + 4903, + 5806, + 7153, + 11177, + 13522, + 16678, + 19665, + 22112, + 24953, + 27100, + 29631, + 31728, + 33366, + 33366, + 48206, + 54406, + 56249, + 58182, + 59989, + 61682, + 62031, + 62442, + 62662, + 64084, + 64084, + 64287, + 64786, + 65187, + 65596, + 65914, + 66337 + ], + "yaxis": "y" + }, + { + "hoverlabel": { + "namelength": 0 + }, + "hovertemplate": "OLS trendline
Values = 2224.37 * Lags + -7927.82
R2=0.945835

Lags=%{x}
Values=%{y} (trend)", + "legendgroup": "", + "marker": { + "color": "#636efa", + "symbol": "circle" + }, + "mode": "lines", + "name": "", + "showlegend": false, + "type": "scatter", + "x": [ + 0, + 1, + 2, + 3, + 4, + 5, + 6, + 7, + 8, + 9, + 10, + 11, + 12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22, + 23, + 24, + 25, + 26, + 27, + 28, + 29, + 30, + 31, + 32, + 33, + 34, + 35, + 36, + 37, + 38 + ], + "xaxis": "x", + "y": [ + -7927.823076923082, + -5703.455870445348, + -3479.0886639676155, + -1254.7214574898817, + 969.6457489878512, + 3194.012955465584, + 5418.380161943319, + 7642.747368421052, + 9867.114574898784, + 12091.481781376518, + 14315.84898785425, + 16540.216194331984, + 18764.58340080972, + 20988.95060728745, + 23213.317813765185, + 25437.685020242916, + 27662.05222672065, + 29886.419433198385, + 32110.78663967612, + 34335.15384615385, + 36559.521052631586, + 38783.88825910932, + 41008.255465587055, + 43232.62267206479, + 45456.989878542525, + 47681.35708502025, + 49905.72429149799, + 52130.09149797572, + 54354.45870445346, + 56578.82591093119, + 58803.19311740892, + 61027.56032388665, + 63251.92753036439, + 65476.29473684212, + 67700.66194331985, + 69925.02914979758, + 72149.39635627532, + 74373.76356275305, + 76598.13076923077 + ], + "yaxis": "y" + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "margin": { + "t": 60 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "xaxis": { + "anchor": "y", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Lags" + } + }, + "yaxis": { + "anchor": "x", + "domain": [ + 0, + 1 + ], + "title": { + "text": "Values" + } + } + } + }, + "text/html": [ + "
\n", + " \n", + " \n", + "
\n", + " \n", + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from sklearn.linear_model import LinearRegression\n", + "df_hubei = df_china[df_china[\"Cities\"] == \"Hubei\"]\n", + "df_hubei = df_hubei.drop([\"Cities\"],axis=1) \n", + "\n", + "fig = px.scatter(df_hubei, x=\"Lags\", y = \"Values\", trendline=\"ols\")\n", + "fig.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAD6CAYAAABDPiuvAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAgAElEQVR4nO3debzWY/7H8ddHwrFNoQynKGMZKcRBxIyxVTN+U/oxU7NoxhKDkeXXKMbYxoiyZYmUJSQk1SglKktSnRZSSWcSWhApmQ5tn98f1/fk7nSf+77Pem/v5+Phce77+n7v732d2+n7ua/tc5m7IyIi+W27dFdARETST8FAREQUDERERMFARERQMBARERQMRESEFIOBmV1pZvPM7H0ze8bMdjKz5mY2zcwWmdmzZrZDdO6O0fOS6HizmOv0jsoXmlm7mPL2UVmJmfWq6V9SREQSs2TrDMysEHgLaOHupWb2HDAW+CUwwt2HmdlDwLvuPsDMLgEOd/eLzawLcJa7/9bMWgDPAMcC+wKvAgdHb/MhcDqwFJgBdHX3+Ynqtddee3mzZs2q9luLiOShmTNnfunujeId2z7Fa2wPFJjZBmBnYAVwCvC76PgTwI3AAKBj9BhgOHC/mVlUPszdvwc+MrMSQmAAKHH3xQBmNiw6N2EwaNasGcXFxSlWX0REzOzjio4l7SZy92VAP+ATQhBYA8wEVrv7xui0pUBh9LgQ+DR67cbo/D1jy8u9pqLyeL9IdzMrNrPilStXJqu6iIikKGkwMLOGhG/qzQndO7sAHeKcWtbfZBUcq2z5toXuA929yN2LGjWK29IREZEqSGUA+TTgI3df6e4bgBHACUADMyvrZmoCLI8eLwWaAkTHfwSsii0v95qKykVEpI6kEgw+AdqY2c5R3/+phP78ScDZ0TndgFHR49HRc6LjEz2MUo8GukSzjZoDBwHTCQPGB0Wzk3YAukTniohIHUk6gOzu08xsODAL2AjMBgYCY4BhZvbPqGxw9JLBwJPRAPEqws0dd58XzUSaH13nUnffBGBmlwHjgXrAo+4+r+Z+RRERSSbp1NJMVVRU5JpNJCKSOjOb6e5F8Y5pBbKIiCgYiIhkjfHj4YEHauXSCgYiIplu1Sr405+gfXsYOBA2bKjxt1AwEBHJZC+8AC1awFNPwXXXwbRpUL9+jb9NqukoRESkLq1YAZddBiNGQOvWMG4cHHlkrb2dWgYiIpnEHR5/PLQGxoyBPn1g+vRaDQSgloGISOZYsgQuugheeQVOPBEGDYJDDqmTt1bLQEQk3TZvhvvug5Yt4e23w4yh11+vs0AAahmIiKTXggVwwQUhCLRvDw89BPvvX+fVUMtARCQdNmyAf/0rjAV88AEMGQJjx6YlEIBaBiIidW/WLDj/fJgzB845J3QR7b13WqukloGISF0pLYXeveHYY+Gzz8K00eeeS3sgALUMRETqxltvhdbAhx/CeedBv37QsGG6a7WFWgYiIrVp7dqweOykk2D9+jBtdPDgjAoEoGAgIlJ7xo0L00UffBB69IC5c+H009Ndq7gUDEREatpXX0G3btChA+yyC0yZAvfcA7vumu6aVUjBQESkprjD8OEhlcTQoXD99TB7Nhx/fLprlpQGkEVEasKKFXDppfDii3D00WFs4Igj0l2rlKllICJSHe7w2GOhNfDyy3D77fDOO1kVCEAtAxGRqvvoI+jeHV59FX72M3jkETj44HTXqkrUMhARqaxNm6B//zBTaNo0GDAAJk3K2kAAahmIiFTOggVh8djUqWG20MMPQ9Om6a5VtallICKSig0b4NZbQ2K5Dz8M21COGZMTgQDUMhARSW7mzJBC4r334De/CYnlGjeu0yqMnL2MvuMXsnx1Kfs2KKBnu0Po1Lqwxq6vYCAiUpHSUrjpppBHqHFjGDkSOnaslbdKdLMfOXsZvUfMpXTDJgCWrS6l94i5ADUWEBQMRETieeONsOnMokVhjKBfP2jQoMqXq87Nvu/4hVuOlSndsIm+4xfWWDDQmIGISKy1a8PisZ//HDZuDNNGBw1KGghGzl5G2z4Tad5rDG37TGTk7GVbHes9Yi7LVpfi/HCzLzsn0c0eYPnq0rjvWVF5VSgYiIiUGTcODjssTBW94oqQWO7UU4H03uz3bVAQ93hF5VWhYCAi8tVXfHLm2dChA4vWQfeL+zPy3P8LSeZI/82+Z7tDKKhfb6tjBfXr0bPdIVX7fePQmIGI5IRks23iHj9yXxg+nO8uvoR9Vn/NvSd04YHjf8v67evzZiX67FO52S+Lc07szT52zAC2vtmX/R6aTSQikkCyAdh4x+964nWOvXoI+04az5LCg7mi4w180Lj5lmtm2s2+U+vCGr35l6dgICJZL9k3962Ou3PO3AlcP3EwO27aAHfcwZkrD2HjdvW2uW4u3eyTUTAQkYxQpW6e6Hiyb+5lP5us/ozbxt3PSR/PYVrTlvRq/1cm9ezO3n0m5vzNPhkFAxGpE9WZZ5/seLJv7k1234HTJj5PzzeGsMm247ozLmHoke3Zt2EYIM6Hm30yCgYiUiNqc1FVsuMJb+bz5zPy2d7s+d5MJh5QxHXtLmXF7o3y7mafjIKBiFRbdW/2qXbzVHQ83s38b6c0p+OYx+CWW9hzt90o/md/rt+uBZ+t+Y7CPLzZJ6NgICLVVttTL5Mdh3I38+JiOL9TSCzXpQvcey9FjRszpUq/XX7QojMRqbbaXlSV8qKr0lL429/guOPgyy9h1Ch45pk6zzCajVIKBmbWwMyGm9kHZrbAzI43sz3MbIKZLYp+NozONTPrb2YlZvaemR0Vc51u0fmLzKxbTPnRZjY3ek1/M7Oa/1VFpDoSpWOo7s2+U+tCbuvcisIGBRhQ2KCA2zq32vJNP9lxAF5/Pew73LdvSCw3bx78+tc19wHkOHP35CeZPQG86e6DzGwHYGfgWmCVu/cxs15AQ3e/xsx+CfwV+CVwHHCvux9nZnsAxUAR4MBM4Gh3/9rMpgM9gHeAsUB/d385UZ2Kioq8uLi4ir+2iFRG+TEBCDfzshtysuNl16iVFbTffAPXXAMPPQQHHAADB27JJyRbM7OZ7l4U71jSMQMz2x34GfAnAHdfD6w3s47AydFpTwCTgWuAjsAQD1HmnahVsU907gR3XxVddwLQ3swmA7u7+9SofAjQCUgYDESk7iQbE0jbbJyxY+Gii2D5crjqKrj55i35hKRyUhlAPgBYCTxmZkcQvtH3APZ29xUA7r7CzMo65QqBT2NevzQqS1S+NE75NsysO9AdYL/99kuh6iJSE1JJoVyns3G+/DJkFX36aWjRAoYPD+MEUmWpjBlsDxwFDHD31sB/gV4Jzo/X3+9VKN+20H2guxe5e1GjRo0S11pEKqU6YwJ1xh2efTYEgGefhX/8A2bNUiCoAakEg6XAUnefFj0fTggOn0fdP0Q/v4g5P3aH6CbA8iTlTeKUi0gdSZaiuS5SKCe1fDmcdVaYKrr//mFf4ptugh13rLs65LCkwcDdPwM+NbOy/+unAvOB0UDZjKBuwKjo8Wjg3GhWURtgTdSdNB44w8waRjOPzgDGR8fWmlmbaBbRuTHXEpE6kCwff0qzeWqLe9hprEULGD8e7rgDpk6Fww+v/ffOI6kuOvsr8HQ0k2gx8GdCIHnOzM4HPgHOic4dS5hJVAKsi87F3VeZ2S3AjOi8m8sGk4G/AI8DBYSBYw0ei9ShjBsTKLN4MVx4IUycGLahHDQIDjywbuuQJ1IKBu4+hzAltLxt5m9Fs4gureA6jwKPxikvBlqmUhcRqXmprPCtU5s2wX33wXXXQb16YdrohRfCdlonW1v0yYrkiUQDxBkxJlBm3jxo2xauvBJ+8QuYPz9MH1UgqFXKTSSSB5IlkquLbRWTWr8ebr8dbrkFdt89TBvt2hWUkKBOKBiI5IFki8YgzVk7Z8wIKSTmzg2zhfr3B00fr1Nqd4nkgVQGiNNi3bqQWK5NG/jqqx8SyykQ1Dm1DERyRKLcPxk3QAwweXIYFC4pCT/79oUf/Sh99clzahmI5ICsWDRWZs0auPjiMDi8eTO89lpILqdAkFYKBiI5IKMXjcUaMwYOOwweeQSuvjqMEZxySt3WQeJSN5FIDsjYRWNlVq4MieWGDg3BYMQIOPbY9NRF4lLLQCQHZEwiufLcYdiwkEri+efhxhtDYjkFgoyjYCCSAzJqTKDMsmXQsWNYK3DAASEI3HAD7LBD+uokFVI3kUgOyIhFY2XKEsv93//Bhg1w553Qo0dIKyEZS8FAJEekdUygzH/+E6aJTpoUZgs98gj85CfprZOkRN1EIlJ9mzbBXXdBq1Zhn4GBA8OUUQWCrKGWgYhUz/vvh1QS06fDmWfCgAHQpEny10lGUctARKpm/fqw09hRR4V9B4YOhdGjFQiylFoGIlJ5M2bAeeeFVsHvfgf33KN8QllOLQMRSd26dWGWUJs28PXXoSXw9NMKBDlALQMRSc3kyXDBBWHG0EUXhb0HlE8oZ6hlICKJrVkTbv6/+EV4PnFi2IZSgSCnqGUgkiUSpaiuNS+9FDKMrlgRuoduugl23rl231PSQsFAJAsk27ayxq1cGVYNP/MMtGypxHJ5QN1EIlkgWYrqGuMeAkCLFjB8eGgJzJypQJAH1DIQyQJ1sm3l0qXwl7+ErqHjjoPBg0O6ackLahmIZIFaTVG9eTM8/HBoDbz2WkgrMWWKAkGeUTAQyQK1lqK6pAROPTUMEh9zTFhEduWVyjCahxQMRLJAjW9buXEj9OsXEsvNmhWyi776ath3QPKSxgxEskSNpaieOzcklpsxA379a3jwQShMc+prSTu1DETyxfr1YdvJo4+GJUvCdpQjRyoQCKCWgUh+mD49JJabNy8klrv3Xthrr3TXSjKIWgYiuWzdOrj6ajj++JBW4qWXQmI5BQIpRy0DkVw1aVJILLd4cZgtdPvtsPvu6a6VZCi1DERyzZo10L07nHIKbLddyDY6YIACgSSkYCCSS/7977B4bPBg6NkT3n0Xfv7zdNdKsoCCgUguWLkSunYNU0X33BPeeQfuuEMZRiVlCgYi2cw97D186KHwwgtw881QXBxWE4tUggaQRbLVp5+GxHJjxiixnFSbWgYi2Wbz5rDT2GGHhRlDd9+txHJSbWoZiGSTRYvgwgvh9ddDgrmBA5VPSGpEyi0DM6tnZrPN7KXoeXMzm2Zmi8zsWTPbISrfMXpeEh1vFnON3lH5QjNrF1PePiorMbNeNffrieSIjRuhb184/HCYMwcGDYIJExQIpMZUppuoB7Ag5vntwN3ufhDwNXB+VH4+8LW7HwjcHZ2HmbUAugCHAe2BB6MAUw94AOgAtAC6RueKCMB774UVxH/7G7RrB/Pnh0RzZumumeSQlIKBmTUBfgUMip4bcAowPDrlCaBT9Lhj9Jzo+KnR+R2BYe7+vbt/BJQAx0b/lbj7YndfDwyLzhXJb99/D//4R0gs9/HH8Oyz8OKLsO++6a6Z5KBUWwb3AH8DNkfP9wRWu/vG6PlSoCz1YSHwKUB0fE10/pbycq+pqHwbZtbdzIrNrHjlypUpVl0kC73zDhx1FNxyC3TpAgsWwG9+o9aA1JqkwcDMzgS+cPeZscVxTvUkxypbvm2h+0B3L3L3okaNGiWotUiW+u9/4aqr4IQT4JtvwrTRJ58MC8lEalEqs4naAr82s18COwG7E1oKDcxs++jbfxNgeXT+UqApsNTMtgd+BKyKKS8T+5qKykXyx8SJYabQ4sVh/UCfPsonJHUmacvA3Xu7exN3b0YYAJ7o7r8HJgFnR6d1A0ZFj0dHz4mOT3R3j8q7RLONmgMHAdOBGcBB0eykHaL3GF0jv51INli9OgSBU08New+//nrYfUyBQOpQddYZXAMMM7N/ArOBwVH5YOBJMyshtAi6ALj7PDN7DpgPbAQudfdNAGZ2GTAeqAc86u7zqlEvkewxalRoBXz+eZgtdOONUFCQ7lpJHrLwpT37FBUVeXFxcbqrIVI1X3wBl18eZggdfnhIJVFUlO5aSY4zs5nuHvcPTekoROqSOzz1VEgs9+KLYbZQcbECgaSd0lGI1JVPPw07jo0dC23ahNZAC62vlMygloFIbdu8Oew0dthhYdexu++Gt95SIJCMopaBSG1atCjsQ/zGG3DaaSGxXPPm6a6VyDbUMhCpDRs3hp3GDj88bD05eDC88ooCgWQstQxEatq774ZEcjNnQqdO8MADyickGU/BQKSmfP89/POfYeXwHnvA88/D//7vlnxCI2cvo+/4hSxfXcq+DQro2e4QOrX+IQ1XsuMitUnBQKQmTJ0aWgMLFsAf/xgGiWPyCY2cvYzeI+ZSumETAMtWl9J7xFwAOrUuTHpcpLZpzECkOv77X7jiCmjbNjx++WUYMmSbxHJ9xy/ccqMvU7phE33HL0zpuEhtU8tApKpefTXkFFqyBC69FG67DXbbLe6py1eXJixPdlyktqllIFJZq1eHLqHTT4f69cO00fvvZ2TJN7TtM5HmvcbQts9ERs5etuUl+zaIn2+orDzZcZHapmAgUhmjRoXFYk88Ab16hZlDJ520pc9/2epSnB/6/MsCQs92h1BQv95WlyqoX4+e7Q5J6bhIbVMwEEnF55/Db38bpoo2bgzTpoVuoSjDaLI+/06tC7mtcysKGxRgQGGDAm7r3GrL4HCy4yK1TWMGIom4w9NPQ48e8O23cOut0LNn6B6KkUqff6fWhQlv7smOi9QmtQxEKvLJJ/CrX4WpooccAnPmwLXXbhMIQH3+kv0UDETKi00s98Yb0L8/vPkmI7/bvcIBYvX5S7ZTN5FIrA8/DInl3nwzzBYaOBCaNUu6KKyse0criCVbKRiIQEgsd9ddcMMNsNNO8Nhj0K3bllQSiQaIYweBdfOXbKVgIPLuu3DeeTBrFpx1Vkgst88+W52iRWGS6zRmIPnru+/g738PW04uWwbDh8OIEdsEAtAAseQ+BQPJT2+/Da1bh6miv/89zJ8fMoxWQAPEkuvUTST55dtv4brr4L77oGlTGDcO2rUDEqeQ1gCx5DoFA8kfEyZA9+4hsdxll8G//rUlsVwqKaQ1QCy5TN1Ekvu+/joMEJ9xBuy4Y5g2et99W2UYVQppyXcKBpLbXnwxJJYbMiQklpszB048cZvTNFtI8p2CgeSmzz6Dc86Bzp3hxz+G6dNDYrmddop7umYLSb5TMJDc4h5aAS1awL//HcYFpk+Ho45i5OxlSichUgENIEvu+OQTuOiiMEPohBNg8GD46U+B5APEmi0k+U7BQLJfWWK5Xr1Cy+C+++CSS2C7Hxq+SichkpiCgWS3hQtDYrm33gqzhR5+GJo12+Y0DRCLJKYxA8lOGzdCnz5wxBHw/vshsdy4cXEDAWiAWCQZBQPJPnPmwHHHQe/eYfOZBQvgT3/akmE0Hg0QiySmYCDZoyyx3DHH/JBY7oUXwtTRJLTHsEhiGjOQ7PD223D++fDBB2Gfgbvugj322OqURLmFQAPEIomoZSCZ7dtv4fLLw6rhdevCuMDjj8cNBL1HzGXZ6lKcH6aOxq4lEJGKKRhI5nrlFWjZEu6/Hy69NAwURxlGy1NuIZHqUTCQzPP11/DnP4cb/047hU3pyyWWK09TR0WqR8FAMsuIESGVxJNPhtlCFSSWK09TR0WqJ2kwMLOmZjbJzBaY2Twz6xGV72FmE8xsUfSzYVRuZtbfzErM7D0zOyrmWt2i8xeZWbeY8qPNbG70mv5mCeYISm767DM4++yw29iPfwwzZoS8QjGJ5ZRbSKT2pNIy2Ahc7e6HAm2AS82sBdALeM3dDwJei54DdAAOiv7rDgyAEDyAG4DjgGOBG8oCSHRO95jXta/+ryZZwR2eeCK0Bl566YfEcq1bb3VasgFiTR0VqZ6kU0vdfQWwInq81swWAIVAR+Dk6LQngMnANVH5EHd34B0za2Bm+0TnTnD3VQBmNgFob2aTgd3dfWpUPgToBLxcM7+iZKyPPw6J5caPh7ZtYdCgLYnlylNuIZHaVakxAzNrBrQGpgF7R4GiLGA0jk4rBD6NednSqCxR+dI45fHev7uZFZtZ8cqVKytTdckkmzeHGUKHHQZTpoTHb7xRYSAADRCL1LaUg4GZ7Qq8AFzh7t8kOjVOmVehfNtC94HuXuTuRY0aNUpWZclECxfCz34Gf/1rGBh+//0wbXS7xH+KGiAWqV0pBQMzq08IBE+7+4io+POo+4fo5xdR+VKgaczLmwDLk5Q3iVMuuWTDhrDT2BFHwPz5YZzg5Zdh//1TerkGiEVqVyqziQwYDCxw97tiDo0GymYEdQNGxZSfG80qagOsibqRxgNnmFnDaOD4DGB8dGytmbWJ3uvcmGtJLpg9OySWu/Za+J//CcHg3HMTJpYrTwPEIrUrldxEbYE/AnPNbE5Udi3QB3jOzM4HPgHOiY6NBX4JlADrgD8DuPsqM7sFmBGdd3PZYDLwF+BxoIAwcKzB41zw3Xdw881wxx3QqFFIKte5c4WnK7eQSPpYmPSTfYqKiry4uDjd1ZCKTJkSEsstXBhWE995JzRsWOHp5belhNANpG//IjXHzGa6e1G8Y1qBLDVr7dowOHzSSfD99yG/0KOPJgwEoNxCIummYCA1Z/x4aNUKHnggBIS5c+H001N6qaaOiqSXgoFU36pVYaex9u2hoCDsR3zvvbDrrilfQlNHRdJLwUCq54UXQiqJp56C664LM4dOOKHSl9HUUZH00k5nUjUrVsBll4Uso61bh01njjyyypcrGyRONJtIRGqPgoFUTlliuSuvhNJS6NMHrr4atq/+n5Kmjoqkj4KBpG7JkpBY7pVXQiqJQYPgkNS7cZKtIxCR9NGYgSS3eXPYaaxly7Ax/f33w+uvVzoQaI9ikcylYCCJffBBSCx3+eVh7UCKieXK0zoCkcymYCDxbdgQNpo54ghYsACGDIGxY1NOLFee1hGIZDaNGci2Zs0KqSTmzIFzzgldRHvvXa1L7tuggGVxbvxaRyCSGdQykB+UloZN6I89NuxJPGIEPPdcyoFAexSLZC+1DCR4663QGvjwQzjvPOjXL2k+oVjlE82VDRDD1lNGNZtIJDMpGOS7tWtDa+CBB6BZM5gwAU47rdKX0R7FItlN3UT5bNy4MF30wQfhiivCTKEqBALQALFItlMwyEdffQXdukGHDrDLLmHvgbvvDo+rSInmRLKbgkE+cYfhw0NiuaFD4frrQ2K544+v9qU1QCyS3TRmkC9WrAiLxV58EY4+OqSUOOKIGru8BohFspuCQa5zh8cfh6uuCnsS3357eFwDieXK0wCxSPZSMMhlH30E3bvDq6+GVBKDBsHBB6e7ViKSgTRmkIs2bYL+/cNMoXfeCbOFJk9WIBCRCqllkGsWLAiLx6ZODbOFHnoI9tuvRi6tFNQiuUstg1yxYQPcemvYbWzhQnjySRgzpkYDgVJQi+QuBYNcMHMmFBXB3/8OnTrB/Pnwhz+AWY29hVJQi+Q2dRNls9JSuOmmkEeoceMwbbRTpypfLlE3kFYYi+Q2BYNs9cYbcMEFsGhRGCPo1w8aNKjy5ZIlmlMKapHcpm6ibPPNN2Hx2M9/Dhs3hmmjgwalFAgSpZhO1g2kFcYiuU0tg2zy8sthQ/qlS+HKK+GWW1LOJ5Tsm3+ybiCtMBbJbQoG2eCrr8LN/8knQ16ht9+GNm0qdYlkKaZT6QbSCmOR3KVuokzmHnYaO/RQeOYZPrjwCk7ueifNR361TTcPJO4GSvbNX91AIvlNwSBTLV8OnTvDb38L++/PxKfGctbe7Vjy7aa48/yTrQNIlmK6U+tCbuvcisIGBRhQ2KCA2zq3UktAJE8oGGQadxg8OHQHjRsHffvC1Klc/1G9hAO8NTEA3Kl1IVN6ncJHfX7FlF6nKBCI5BGNGWSSxYtDYrnXXguzhQYNggMPBJJ382gAWESqQ8EgE2zaBPfdB9ddB/XqwYABIShs90PDLdkArwaARaQ61E2UbvPnw4knwpVX8tlRbTjrkoE0X9KUtndM3moAOFk3jwaARaQ61DKoQ7HpHpruVp+Hl03g0MH9YbfdKP5nf/5YeiClGzcD264DSNbNo24gEakOc/d016FKioqKvLi4uFKvSZaCuTaPxy76avlZCX3H3sOhK5ewtF1HmgwZSNtH34/bzVPYoIApvU6p7McjIrINM5vp7kXxjmVMy8DM2gP3AvWAQe7epyavn2wFbm0f7zt+IZvXraPXlKFcOP1FVu7SgAs6X8+CY05mSuPGSgQnImmVEWMGZlYPeADoALQAuppZi5p8j2RTL2v7eJO5M3j5sb9y8bQXeK7VaZxx/oO8etBxW272ydYBiIjUpowIBsCxQIm7L3b39cAwoGNNvkF1p2ZW9fg3n38Fl1zCs0N7Uc8307XLrfTucDnf7LQr8MPNXgPAIpJOmdJNVAh8GvN8KXBc+ZPMrDvQHWC/Su7gVd2pmVU5fvJ/ZtBnwgBY+yUlf+jOb/btwCqrv+V47M1eA8Aikk6Z0jKItyXXNiPb7j7Q3YvcvahRo0aVeoPqTs2szPGG69Zw10t38vjwm9h5zwbw9tsc+OTD/KPLMQnTPWgFsIikS6a0DJYCTWOeNwGW1+QbVHdqZkrH3ZnZbyA9RvWnwXff8kH3K/lp/9tgxx23nKMbvIhkooyYWmpm2wMfAqcCy4AZwO/cfV5Fr6nK1NJatXw5XHIJjBoV9iN+9FFo1SrdtRIR2SLR1NKM6CZy943AZcB4YAHwXKJAkFFiE8uNHx+2n5w6VYFARLJKpnQT4e5jgbHprkelLF4MF14IEyduk1hORCSbZETLIOts2gT33BO+/c+YAQ8/HAKCAoGIZKmMaRlkjXnz4PzzYdo0+NWv4KGHoEmTdNdKRKRa1DJI1fr1YQP61q3hP/+BoUPh3/9WIBCRnKCWQSpmzAitgblzoWtXuPdeqOQ6BxGRTKaWQSLr1kHPntCmDaxaBaNHhxaBAoGI5Bi1DCoyeXKYKVRSEnYdu+MO+NGP0l0rEZFaoZZBeWvWwMUXwy9+EdYQTJwYZgspEIhIDlMwiDVmDLRsCY88AlddBe+9F4KCiEiOU0o9oOUAAATtSURBVDAAWLkSfv97OPPM0AJ4+224807Yeed010xEpE7kdzBwh2HDQiqJ55+HG26AWbPguG2yZ4uI5LT8HUBetgz+8pewVuCYY0J+IeUTEpE8lX8tA/cwJtCiBbz6augOUmI5Eclz+dUyKC0NKSQmTQoDw488Aj/5SbprJSKSdvkVDAoK4OCDwyriCy4Ai7fBmohI/smvYAAhsZyIiGwl/8YMRERkGwoGIiKiYCAiIgoGIiKCgoGIiKBgICIiKBiIiAgKBiIiApi7p7sOVWJmK4GPq/jyvYAva7A6NU31qx7Vr3pUv+rJ5Prt7+5x9+3N2mBQHWZW7O5F6a5HRVS/6lH9qkf1q55Mr19F1E0kIiIKBiIikr/BYGC6K5CE6lc9ql/1qH7Vk+n1iysvxwxERGRr+doyEBGRGAoGIiKSX8HAzNqb2UIzKzGzXumuTzxmtsTM5prZHDMrzoD6PGpmX5jZ+zFle5jZBDNbFP1smGH1u9HMlkWf4Rwz+2Wa6tbUzCaZ2QIzm2dmPaLyjPj8EtQvIz6/qC47mdl0M3s3quNNUXlzM5sWfYbPmtkOGVS3x83so5jP78i6rltV5M2YgZnVAz4ETgeWAjOAru4+P60VK8fMlgBF7p4Ri1bM7GfAt8AQd28Zld0BrHL3PlFQbeju12RQ/W4EvnX3fumoU0zd9gH2cfdZZrYbMBPoBPyJDPj8EtTvN2TA5wdgZgbs4u7fmll94C2gB3AVMMLdh5nZQ8C77j4gQ+p2MfCSuw+vy/pUVz61DI4FStx9sbuvB4YBHdNcp4zn7m8Aq8oVdwSeiB4/QbiBpEUF9csI7r7C3WdFj9cCC4BCMuTzS1C/jOHBt9HT+tF/DpwClN1s0/IZJqhbVsqnYFAIfBrzfCkZ9ocfceAVM5tpZt3TXZkK7O3uKyDcUIDGaa5PPJeZ2XtRN1LaurHKmFkzoDUwjQz8/MrVDzLo8zOzemY2B/gCmAD8B1jt7hujU9L2b7l83dy97PO7Nfr87jazHdNRt8rKp2BgccoyMYq3dfejgA7ApVE3iFTOAOAnwJHACuDOdFbGzHYFXgCucPdv0lmXeOLUL6M+P3ff5O5HAk0ILfxD451Wt7WK3rRc3cysJdAb+ClwDLAHkJYu1MrKp2CwFGga87wJsDxNdamQuy+Pfn4BvEj44880n0f9zWX9zl+kuT5bcffPo3+km4FHSONnGPUlvwA87e4jouKM+fzi1S+TPr9Y7r4amAy0ARqY2fbRobT/W46pW/uo+83d/XvgMTLk80smn4LBDOCgaBbCDkAXYHSa67QVM9slGsjDzHYBzgDeT/yqtBgNdIsedwNGpbEu2yi70UbOIk2fYTTAOBhY4O53xRzKiM+vovplyucX1aWRmTWIHhcApxHGNiYBZ0enpeUzrKBuH8QEeiOMZWTiv+Ft5M1sIoBoitw9QD3gUXe/Nc1V2oqZHUBoDQBsDwxNdx3N7BngZEJa3s+BG4CRwHPAfsAnwDnunpZB3ArqdzKhi8OBJcBFZX30dVy3E4E3gbnA5qj4WkK/fNo/vwT160oGfH5RHQ8nDBDXI3x5fc7db47+rQwjdMPMBv4QfRPPhLpNBBoRuqbnABfHDDRnrLwKBiIiEl8+dROJiEgFFAxERETBQEREFAxERAQFAxERQcFARERQMBAREeD/ARQ2x//GLRvHAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.9458346650136403\n" + ] + } + ], + "source": [ + "X = df_hubei.iloc[:, 1].values.reshape(-1, 1) # values converts it into a numpy array\n", + "Y = df_hubei.iloc[:, 0].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but have 1 column\n", + "linear_regressor = LinearRegression() # create object for the class\n", + "linear_regressor.fit(X, Y) # perform linear regression\n", + "acc = linear_regressor.score(X, Y)\n", + "Y_pred = linear_regressor.predict(X) # make predictions\n", + "plt.scatter(X, Y)\n", + "plt.plot(X, Y_pred, color='red')\n", + "plt.show()\n", + "print(\"Accuracy:\" ,acc)" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [], + "source": [ + "\n", + "predictions = linear_regressor.predict(X)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Prediction: [-7927.82307692] - Day: [0] - Actual: [444]\n", + "Prediction: [-5703.45587045] - Day: [1] - Actual: [444]\n", + "Prediction: [-3479.08866397] - Day: [2] - Actual: [549]\n", + "Prediction: [-1254.72145749] - Day: [3] - Actual: [761]\n", + "Prediction: [969.64574899] - Day: [4] - Actual: [1058]\n", + "Prediction: [3194.01295547] - Day: [5] - Actual: [1423]\n", + "Prediction: [5418.38016194] - Day: [6] - Actual: [3554]\n", + "Prediction: [7642.74736842] - Day: [7] - Actual: [3554]\n", + "Prediction: [9867.1145749] - Day: [8] - Actual: [4903]\n", + "Prediction: [12091.48178138] - Day: [9] - Actual: [5806]\n", + "Prediction: [14315.84898785] - Day: [10] - Actual: [7153]\n", + "Prediction: [16540.21619433] - Day: [11] - Actual: [11177]\n", + "Prediction: [18764.58340081] - Day: [12] - Actual: [13522]\n", + "Prediction: [20988.95060729] - Day: [13] - Actual: [16678]\n", + "Prediction: [23213.31781377] - Day: [14] - Actual: [19665]\n", + "Prediction: [25437.68502024] - Day: [15] - Actual: [22112]\n", + "Prediction: [27662.05222672] - Day: [16] - Actual: [24953]\n", + "Prediction: [29886.4194332] - Day: [17] - Actual: [27100]\n", + "Prediction: [32110.78663968] - Day: [18] - Actual: [29631]\n", + "Prediction: [34335.15384615] - Day: [19] - Actual: [31728]\n", + "Prediction: [36559.52105263] - Day: [20] - Actual: [33366]\n", + "Prediction: [38783.88825911] - Day: [21] - Actual: [33366]\n", + "Prediction: [41008.25546559] - Day: [22] - Actual: [48206]\n", + "Prediction: [43232.62267206] - Day: [23] - Actual: [54406]\n", + "Prediction: [45456.98987854] - Day: [24] - Actual: [56249]\n", + "Prediction: [47681.35708502] - Day: [25] - Actual: [58182]\n", + "Prediction: [49905.7242915] - Day: [26] - Actual: [59989]\n", + "Prediction: [52130.09149798] - Day: [27] - Actual: [61682]\n", + "Prediction: [54354.45870445] - Day: [28] - Actual: [62031]\n", + "Prediction: [56578.82591093] - Day: [29] - Actual: [62442]\n", + "Prediction: [58803.19311741] - Day: [30] - Actual: [62662]\n", + "Prediction: [61027.56032389] - Day: [31] - Actual: [64084]\n", + "Prediction: [63251.92753036] - Day: [32] - Actual: [64084]\n", + "Prediction: [65476.29473684] - Day: [33] - Actual: [64287]\n", + "Prediction: [67700.66194332] - Day: [34] - Actual: [64786]\n", + "Prediction: [69925.0291498] - Day: [35] - Actual: [65187]\n", + "Prediction: [72149.39635628] - Day: [36] - Actual: [65596]\n", + "Prediction: [74373.76356275] - Day: [37] - Actual: [65914]\n", + "Prediction: [76598.13076923] - Day: [38] - Actual: [66337]\n" + ] + } + ], + "source": [ + "for x in range(len(predictions)):\n", + " print(\"Prediction: \",predictions[x],\"- Day:\", X[x],\"- Actual: \", Y[x])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Prediction for 01/03/2020, 02/03/2020, 03/03/2020" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Giorno 39 : 78822.49797570852\n", + "Giorno 40 : 81046.86518218626\n", + "Giorno 41 : 83271.23238866398\n" + ] + } + ], + "source": [ + "prediction = linear_regressor.predict([[39],[40],[41]])\n", + "l = 39\n", + "for x in prediction:\n", + " print(\"Giorno \",l,\": \",x[0])\n", + " l+=1" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Logistic regression" + ] + }, + { + "cell_type": "code", + "execution_count": 138, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n", + "\n", + "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + "\n", + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py:724: DataConversionWarning:\n", + "\n", + "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + "\n", + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n", + "\n", + "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjAsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+17YcXAAAcDklEQVR4nO3df4xc9Xnv8ffD7tqs+bV2WOjaTrCJjA2ExnYWh9Q3iB8ldrgJOCSVoFKEbqjcH0FK1Mq3dlqVVLpX0Pq2iapbpaE3NNwqTUoBLy1NuutrTEhAAtasg03GNmCT4LWDN4WtAS/ueve5f5wzMLue2T07c2bO+c5+XtLonPnOmZkHeXh8/H2+P8zdERGR8JyRdQAiIlIdJXARkUApgYuIBEoJXEQkUErgIiKBam3kl51//vm+ZMmSRn6liEjwdu3a9Ut375zc3tAEvmTJEvr7+xv5lSIiwTOzn5VrVxeKiEiglMBFRAKlBC4iEiglcBGRQCmBi4gEqqGjUEREZpuegUG29u7nyPAICzva2bRuORtWLUrls5XARUTqpGdgkC0P72FkdAyAweERtjy8ByCVJK4Enkfu8Pd/D2+8kXUkIlKDV/7fAW4dGQVg+7KrOHzehYyMjrG1d78SeNPq74fbb886ChGp0ZdLzg8uWMzh8y4E4MjwSCqfrwSeR3v3Rsf+frj44mxjEZGqrf/6Exz5j3cAONF25rvtCzvaU/l8JfA8KhRgzhz48IehVX9EIqH6nQ3dE/rAAdrbWti0bnkqn6/skEeFAlxyiZK3SMCKo09GRsdoMWPMnUUahTILFAqwenXWUYhIlSaPPhlzf/fOO63kDZrIkz/vvAOHDsGll2YdiYhUqXjnXao4+iRNSuB5c+AAjI8rgYsErNIok7RGnxQpgedNoRAdlcBFglVplElao0+KlMDzplAAs6iIKSLB6RkY5O2Tp05rT3P0SZGKmHlTKMDSpdCe7t/UIlJ/k4uXRfPntXHXpy9PtYAJugPPn0JB3ScigSpXvASYN6c19eQNSuD5MjYWFTGVwEWC1KjiZZESeJ4cOgQnTyqBiwSqUcXLomkTuJmdaWbPmNlPzOwFM/vTuP3bZnbIzHbHj5V1iXA20QgUkWA1snhZlKSIeRK4zt3fMrM24Mdm9oP4tU3u/mBdIpuNlMBFgtTo4mXRtAnc3R14K37aFj+8LtHMdoUC/MqvQEdH1pGIyAw0unhZlKgP3MxazGw3cAzY7u5Pxy/9TzN73sy+ZmZzK7x3o5n1m1n/0NBQSmE3KY1AEQlSo4uXRYkSuLuPuftKYDGwxsw+BGwBVgBXAguAP6zw3nvdvdvduzs7O1MKuwm5K4GLBKrRxcuiGY1Ccfdh4HFgvbsf9chJ4O+ANXWIb/Y4ehSOH1cCFwlMFsXLoiSjUDrNrCM+bwd+HdhnZl1xmwEbgL31DLTpqYApEpxi8XI43veyaP68Nu6+5Yq69n9DslEoXcD9ZtZClPAfcPdHzewxM+sEDNgN/E4d42x+SuAiwcmqeFmUZBTK88CqMu3X1SWi2apQgHPPha6urCMRkYSyKl4WaSZmXhQKcNll0UqEIhKErIqXRUrgeaERKCJBybJ4WaTlZPNgeBh+8QslcJFAZDXzcjLdgeeBCpgiQcm6eFmkBJ4HSuAiQcm6eFmkBJ4HhQLMnQtLlmQdiYgkkHXxskgJPA8KBVi+HFpaso5ERBLYtG457W0T/39tZPGySAk8DzQCRSQ4c1vfS5+Nmnk5mRJ41kZGop14lMBFglBu+vw7o+OZxKIEnrUDB6KVCJXARYJQbgTKyOgYW3v3NzwWJfCsaQSKSFDyMgIFlMCzVyjAGWfAJZdkHYmIJJCXESigBJ69n/4ULr44GkYoIrm3ad1y2lomrlnU1mINH4ECSuDZ0wgUkfBM3hU4o12ClcCzdOpUVMRUAhcJxtbe/YyOT8zYo+OuIuasc/AgjI4qgYsEREVMiWgEikhw8lTEnHY5WTM7E3gCmBtf/6C732VmS4HvEe1I/xzweXf/z3oG23SKCXzFimzjEJGyegYG2dq7nyPDIyzsaGfTuuVsWrf8tKVks5hGD8nuwE8C17n7h4GVwHozuwr4M+Br7r4MeAO4o35hNqlCARYuhPPOyzoSEZmkOONycHgEBwaHR9jy8B4A7r7lChZ1tGPAoo72TKbRQ7I9MR14K37aFj8cuA74zbj9fuCrwDfSD7GJaQSKSG5NNePyyc3XZZKwJ0vUB25mLWa2GzgGbAdeBobdvbif0GGg7H+NmW00s34z6x8aGkoj5ubgDvv2KYGL5FSeipWVJErg7j7m7iuBxcAaoFzWKTsS0t3vdfdud+/u7OysPtJmMzgIb76pBC6SU3kqVlYyo1Eo7j4MPA5cBXSYWbELZjFwJN3QmpxGoIjk2rUrOrFJbVkVKyuZNoGbWaeZdcTn7cCvAwVgJ/C5+LLbgUfqFWRTUgIXya2egUEe2jU4oVvBgM9+ZFEu+r6LkuxK3wXcb2YtRAn/AXd/1Mx+CnzPzP4HMAB8q45xNp9CATo64MILs45ERCYpV8B0YOe+fNXxkoxCeR5YVab9IFF/uFSjOALFJv8jTUSyFkIBEzQTMzsaQiiSWyEUMEEJPBuvvw7HjimBi+RQz8Agb588dVp73gqYkKwPXNKmAqZILhVnX07u/54/r427Pn15rgqYoDvwbCiBi+RSueIlwLw5rblL3qAEno1CAdrb4aKLso5EREqEUrwsUgLPQqEAy5dDS0vWkYhIiVCKl0VK4FnQCBSR3AmpeFmkBN5oJ07Az36mBC6SI8Xi5fDI6IT2+fPaMlsqNgkl8Ebbvz9aiVAJXCQ3QiteFimBN5pGoIjkTmjFyyIl8EYrFKLi5bJlWUciIrHQipdFSuCNVijABz8Ic+ZkHYmIxDatW05728RRYXkuXhZpJmajaQSKSCbKbVBc7N8uHiu9nldK4I106hS8+CLcdFPWkYjMKpOnyJduUFyaxPOesCdTF0ojvfwyjI7qDlykwabaoDhkSuCNpBEoIpkIdZTJdJTAG6mYwFesyDYOkVkm1FEm00myJ+b7zWynmRXM7AUz+1Lc/lUzGzSz3fHjxvqHG7hCARYvhnPOyToSkabTMzDI2nseY+nmf2XtPY/RMzD47muhjjKZTpIi5ingD9z9OTM7B9hlZtvj177m7v+rfuE1GY1AEamL6YqUoY4ymU6SPTGPAkfj8zfNrACE/V+dhfHxKIHfcUfWkYg0namKlCGPMpnOjPrAzWwJ0QbHT8dNd5rZ82Z2n5nNr/CejWbWb2b9Q0P52tG5oZ57Dt5+G9ZoH2iRtDVrkXI6iRO4mZ0NPAR82d2PA98APgisJLpD/4ty73P3e9292927Ozs7Uwg5UH190fGGG7KNQ6QJNWuRcjqJEriZtREl7++4+8MA7v6au4+5+zjwt4BuLafS2wurVsEFF2QdiUhwpipQQvMWKaeTZBSKAd8CCu7+lyXtXSWXfQbYm354TeLNN+Gpp+ATn8g6EpHgFAuUg8MjOO8VKEuT+IZVi7j7litY1NGOAYs62nO9jndakoxCWQt8HthjZrvjtq8At5nZSsCBV4DfrkuEzWDnzmga/bp1WUciEpwkBUpoziLldJKMQvkxYGVe+n764TSpvj6YNw9+7deyjkQkOLO1QJmEZmI2Ql8fXHstzJ2bdSQiwZmtBcoklMDr7dChaAVC9X+LlKUCZfW0nGy9FYcPqv9b5DRJl3mF5ptFmQYl8Hrr7YUPfAAuuSTrSERyRwXK2qgLpZ5OnYIdO6LuEytXBxaZ3VSgrI0SeD098wwcP67uE5EKVKCsjRJ4PfX2whlnwPXXZx2JSGLTFRXTpAJlbdQHXk99fdHiVfPLrvMlkjtJioppUoGyNkrg9fLGG1EXyh//cdaRiCSWtKiYJhUoq6culHrZsSNaA1z93xIQFRXDogReL729cO65Wv9bgqKiYliUwOvBPer/vv56aFUvlYRDRcWwKLvUw4ED8POfw1e+knUkMo2egUEV0EqoqBgWJfB66O2Njlr/JNcaPeIiFCoqhkNdKPXQ1wfLlsHSpVlHIlOYasSFSAiUwNN28mS0gYPuvnNPIy4kdErgaXvqKThxQsMHA6ARFxK6JHtivt/MdppZwcxeMLMvxe0LzGy7mb0YHzXdEKLuk9ZWuOaarCORaWxat5y2lomLjLW1mEZcSDCS3IGfAv7A3S8FrgK+aGaXAZuBHe6+DNgRP5fe3mjrtHPOyToSScKneS6SY9MmcHc/6u7PxedvAgVgEXAzcH982f3AhnoFGYxjx2BgQN0ngdjau5/R8YkZe3TcVcSUYMyoD9zMlgCrgKeBC939KERJHrigwns2mlm/mfUPDQ3VFm3ebd8eHVXADIKKmBK6xAnczM4GHgK+7O7Hk77P3e9192537+7s7KwmxnD09cH73gerV2cdiSSgIqaELlECN7M2ouT9HXd/OG5+zcy64te7gGP1CTEQxenzN9wQrQEuuVFpfWtNG5fQTTsT08wM+BZQcPe/LHnpn4HbgXvi4yN1iTAUe/bAL36h/u+cSTLbUtPGJVRJptKvBT4P7DGz3XHbV4gS9wNmdgfwc+A36hNiIIq7z99wQ7ZxyATTrW+taeMSsmkTuLv/GKi0I6/2Civq7YXLL4dFSgZ5okKlNDN11qbhxAn40Y/UfZJDKlRKM1MCT8MTT0RroGj4YEMl2XxXhUppZlpONg19fTB3Llx9ddaRzBpJl4JVoVKamRJ4Gvr6ouTdrn+WN8pMNt9VoVKalbpQanX4MLzwgvq/G0zFSREl8Npp+nwmVJwUUQKvXW8vdHXBhz6UdSTBS1KULFJxUkR94LUZG4vuwD/9abBKQ+UliZnuT6nipIgSeG2eew5ef13dJymYSVGySMVJme3UhVILTZ9PjYqSIjOnBF6Lvr5o6dhmXya3AVSUFJk5JfBqHT8ebWCs4YOpUFFSZObUB16txx+HU6fU/51Az8DgtMVGFSVFZk4JvFq9vXDWWdEGxlLRTEaXqCgpMjPqQqlWXx9cey3MmZN1JLk21egSEamNEng1Dh6El15S90kCGl0iUj9K4NUoDh9UAXNaGl0iUj/TJnAzu8/MjpnZ3pK2r5rZoJntjh831jfMnOnrg4sugmXLso6k4WYy3R00ukSknpLcgX8bWF+m/WvuvjJ+fD/dsHJsdBR27Ii6T2bZ9PliQXJweATnvYLkVEl8w6pF3H3LFSzqaMeARR3t3H3LFSpWiqQgyZ6YT5jZkvqHEohnnonGgM/C7pNqpruDRpeI1EstfeB3mtnzcRfL/EoXmdlGM+s3s/6hoaEavi4n+vrgjDPguuuyjqThVJAUyZdqE/g3gA8CK4GjwF9UutDd73X3bnfv7myGKee9vfDRj8L8in9nNS0VJEXypaoE7u6vufuYu48DfwusSTesnHr9dXj22aYbPpi0MKmCpEi+VDUT08y63P1o/PQzwN6prm8aO3bA+HhT9X/PdKYkaLq7SF5Mm8DN7LvANcD5ZnYYuAu4xsxWAg68Avx2HWPMj74+OO88uPLKrCNJzUwLkypIiuRHklEot5Vp/lYdYsk396j/+/rrobV5lpBRYVIkXJqJmdT+/fDqq03VfQIqTIqETAk8qeL0+RwXMGc6SxJUmBQJWfP0BdRbby9ccgksWZJ1JGXNdFPgIhUmRcKlBJ7EyZPRBg5f+ELWkVRU7SxJUGFSJFTqQkniySfhxIlc93+rGCky+yiBJ9HXB21tcM01WUdSkYqRIrOPEngSfX3R1mlnn92Qr1MxUkSSUAKfzmuvwcBAw7pPqlmyFbRsq8hs1NxFTPeo//qtt6r/jCefjI4NGj6oYqSIJNXcCXznzmjmZK0WLoRVq2r/nARUjBSRpJo7gT/0EMybF/Vht7RMf30lH/hAtAZ4AyzsaGewTLJWMVJEJmveBD4+Dj09sH49rF2bdTSJbVq3fMKEHFAxUkTKa94E/uyzcOQIbNiQdSRAVJxMMttRMyNFJKnmTeDbtkWrBn7qU1lHMuNp7ipGikgSzTmM0D1K4Ndck4utz6YaWSIiUq3mTOD79sGBA/CZz2QdCaCRJSJSH82ZwLdti44335xtHDFNcxeRepg2gZvZfWZ2zMz2lrQtMLPtZvZifMy+n6LUtm2wZg0sqq0fuZop7eVomruI1EOSO/BvA+sntW0Gdrj7MmBH/DwfXn0V+vtr7j6pdkp7OZrmLiL1kGRPzCfMbMmk5puJNjoGuB94HPjDFOOqXk9PdKwxgdcypb0cjSwRkbRV2wd+obsfBYiPF1S60Mw2mlm/mfUPDQ1V+XUz0NMDl14Ky2vrnlDhUUTyru5FTHe/19273b27s7Ozvl/27/8OP/xhKpN3VHgUkbyrdiLPa2bW5e5HzawLOJZmUFV79FEYG5tx90m5WZKa0i4ieVftHfg/A7fH57cDj6QTTo22bYPFi6G7O/FbKhUrARUeRSTXpr0DN7PvEhUszzezw8BdwD3AA2Z2B/Bz4DfqGWQiJ05Eqw7ecQeYJX7bVMXKJzdfp4QtIrmVZBTKbRVeSmGh7RT19sLIyIy7T1SsFJFQNc9MzG3bonVPPv7xGb1NxUoRCVVzrEY4Ogr/8i9w003R7vHTKC1antfeRluLMTrm776uYqWIhKA5EvgPfwjDw4m6TyYv7To8MkrbGcb8eW0MnxjV+tsiEozmSOA9PdDenmjj4XJFy9FxZ96cVgb+pDEbF4uIpCH8PvDi1mnr1kX7X05DRUsRaRbhJ/D+fhgcTDz6REVLEWkW4XehbNsW7ThfZus0zbAUkWYW/h14T0+0ddqCBRObNcNSRJpc2Hfg+/ZFjzvvPO0lzbAUkWYX9h34FFunqVgpIs0u/AR+5ZXRAlaTqFgpIs0u3AR++DA8+2zF0Sfah1JEml24CfyReAXbCgl8w6pFfPYji2iJVyZsMeOzH9G2ZiLSPMIoYh4/Hi0XW+rBB6Nt01asKPuWnoFBHto1yJhHa5yMufPQrkG6L1qgJC4iTSGMO/AtW6Cra+Lj8cennLwz1SgUEZFmEMYd+K23whVXTGxrbYXPfa7iWzQKRUSaXRgJ/OMfr2qd78EyyVqjUESkWdTUhWJmr5jZHjPbbWb9aQU1nZ6BQdbe8xhLN/8ra+95jJ6BwdOu0SgUEWl2adyBX+vuv0zhcxKZvJ536RT50uJk8XzyWigqYIpIswijC6XEVMXJycl5wyoNGxSR5lXrKBQH+sxsl5ltLHeBmW00s34z6x8aGqrx61ScFBEpqjWBr3X31cAngS+a2dWTL3D3e9292927Ozs7a/w6TZEXESmqKYG7+5H4eAzYBqxJI6hKegYGefvkqdPaVZwUkdmo6gRuZmeZ2TnFc+ATwN60ApusWLwcHhmd0D5/XpvW8xaRWamWIuaFwDaL1hppBf7B3f8tlajKKFe8BJg3p1XJW0RmpaoTuLsfBD6cYixTUvFSRGSiMNZCQcVLEZHJgkng167oxCa1qXgpIrNZEAm8uDSsl7QZaH1vEZnVgkjg5QqYDuzcV/vEIBGRUAWRwFXAFBE5XRAJXAVMEZHTBZHAVcAUETld7hO4CpgiIuXlPoGrgCkiUl7uE7gKmCIi5eU+gauAKSJSXu4TuPa2FBEpL/cJHGBu63thavlYEZFIrvfEnLyBMcA7o+MZRiQikh+5vgOfagNjEZHZLtcJXCNQREQqy3UC1wgUEZHKakrgZrbezPab2UtmtjmtoIo2rVtOW8vESfRtLaYRKCIi1LapcQvw18AngcuA28zssrQCe5dP81xEZJaq5Q58DfCSux909/8EvgfcnE5Yka29+xkdn5ixR8ddRUwREWpL4IuAV0ueH47bJjCzjWbWb2b9Q0MzW79ERUwRkcpqSeCTV3iFMh0c7n6vu3e7e3dnZ+eMvkBFTBGRympJ4IeB95c8XwwcqS2ciTSNXkSkslpmYj4LLDOzpcAgcCvwm6lEFStOl9/au58jwyMs7Ghn07rlmkYvIkINCdzdT5nZnUAv0ALc5+4vpBZZbMMqbdwgIlJOTWuhuPv3ge+nFIuIiMxArmdiiohIZUrgIiKBUgIXEQmUEriISKDMvXGLi5jZEPCzGb7tfOCXdQin3hR344Uau+JurBDjvsjdT5sJ2dAEXg0z63f37qzjmCnF3Xihxq64GyvUuMtRF4qISKCUwEVEAhVCAr836wCqpLgbL9TYFXdjhRr3aXLfBy4iIuWFcAcuIiJlKIGLiAQq1wm83psmJ4zhPjM7ZmZ7S9oWmNl2M3sxPs6P283M/iqO93kzW13yntvj6180s9tL2j9iZnvi9/yVmZXbKKOauN9vZjvNrGBmL5jZl0KI3czONLNnzOwncdx/GrcvNbOn4xj+0czmxO1z4+cvxa8vKfmsLXH7fjNbV9Jet9+VmbWY2YCZPRpK3Gb2SvznuNvM+uO2XP9O4s/tMLMHzWxf/Dv/WAhxp8rdc/kgWqL2ZeBiYA7wE+CyDOK4GlgN7C1p+3Ngc3y+Gfiz+PxG4AdEuxVdBTwdty8ADsbH+fH5/Pi1Z4CPxe/5AfDJlOLuAlbH5+cAB4g2n8517PFnnR2ftwFPx/E8ANwat/8N8Lvx+e8BfxOf3wr8Y3x+WfybmQssjX9LLfX+XQG/D/wD8Gj8PPdxA68A509qy/XvJP7c+4Hfis/nAB0hxJ3mI/MApvjD+RjQW/J8C7Alo1iWMDGB7we64vMuYH98/k3gtsnXAbcB3yxp/2bc1gXsK2mfcF3K/w2PADeEFDswD3gO+CjRzLnWyb8NovXoPxaft8bX2eTfS/G6ev6uiHal2gFcBzwaxxFC3K9wegLP9e8EOBc4RDwQI5S4037kuQsl0abJGbnQ3Y8CxMcL4vZKMU/VfrhMe6rif56vIrqbzX3scTfEbuAYsJ3oznPY3U+V+a5344tf/w/gfVX896Th68B/B8bj5+8LJG4H+sxsl5ltjNvy/ju5GBgC/i7usvo/ZnZWAHGnKs8JPNGmyTlTKeaZtqcXkNnZwEPAl939+FSXVoil4bG7+5i7ryS6o10DXDrFd+UibjP7FHDM3XeVNk/xXbmIO7bW3VcDnwS+aGZXT3FtXuJuJera/Ia7rwLeJuoyqSQvcacqzwm87psm1+A1M+sCiI/H4vZKMU/VvrhMeyrMrI0oeX/H3R8OKXYAdx8GHifqs+wws+IOUqXf9W588evnAa9PE3c9fldrgZvM7BXge0TdKF8PIG7c/Uh8PAZsI/pLM++/k8PAYXd/On7+IFFCz3vc6cq6D2eKPq5WooLCUt4r2lyeUSxLmNgHvpWJhZI/j8//KxMLJc/E7QuI+uvmx49DwIL4tWfja4uFkhtTitmA/wt8fVJ7rmMHOoGO+Lwd+BHwKeCfmFgM/L34/ItMLAY+EJ9fzsRi4EGiQmDdf1fANbxXxMx13MBZwDkl508B6/P+O4k/90fA8vj8q3HMuY871d9a1gFM8wd0I9HoiZeBP8oohu8CR4FRor+V7yDqq9wBvBgfi3/gBvx1HO8eoLvkc74AvBQ//ltJezewN37P/2ZSUaaGuP8L0T/5ngd2x48b8x478KvAQBz3XuBP4vaLiUYFvESUFOfG7WfGz1+KX7+45LP+KI5tPyUjCOr9u2JiAs913HF8P4kfLxQ/N++/k/hzVwL98W+lhygB5z7uNB+aSi8iEqg894GLiMgUlMBFRAKlBC4iEiglcBGRQCmBi4gESglcRCRQSuAiIoH6/zOHTP4IHgQKAAAAAElFTkSuQmCC\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.02564102564102564\n" + ] + } + ], + "source": [ + "from sklearn.linear_model import LogisticRegression\n", + "\n", + "\n", + "X = df_hubei.iloc[:, 1].values.reshape(-1, 1) # values converts it into a numpy array\n", + "Y = df_hubei.iloc[:, 0].values.reshape(-1, 1) # -1 means that calculate the dimension of rows, but have 1 column\n", + "logistic = LogisticRegression(random_state=0) # create object for the class\n", + "logistic.fit(X, Y) # perform linear regression\n", + "acc = logistic.score(X, Y)\n", + "Y_pred = logistic.predict(X) # make predictions\n", + "\n", + "\n", + "plt.scatter(X, Y)\n", + "plt.plot(X, Y_pred, color='red')\n", + "plt.show()\n", + "print(\"Accuracy:\" ,acc)\n", + "\n", + "#plt.plot(X_test, ols.coef_ * X_test + ols.intercept_, linewidth=1)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 135, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([64084], dtype=int64)" + ] + }, + "execution_count": 135, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "Y_pred = logistic.predict([[41]])\n", + "Y_pred " + ] + }, + { + "cell_type": "code", + "execution_count": 136, + "metadata": {}, + "outputs": [], + "source": [ + "prob = logistic.predict_proba(X)" + ] + }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 131, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Accuracy: 0.2564102564102564\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning:\n", + "\n", + "Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + "\n", + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\utils\\validation.py:724: DataConversionWarning:\n", + "\n", + "A column-vector y was passed when a 1d array was expected. Please change the shape of y to (n_samples, ), for example using ravel().\n", + "\n", + "C:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning:\n", + "\n", + "Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + "\n" + ] + } + ], "source": [ - "(ggplot(df)\n", - " + aes(x='\"Lags\"', y='Values', color='Cities')\n", - " + geom_point()\n", - " + labs(title='Covid-19 Virus cases', x='Days', y='Highway Miles per Gallon')\n", - ")" + "from sklearn import linear_model\n", + "from scipy.special import expit\n", + "clf = linear_model.LogisticRegression(C=1e5)\n", + "clf.fit(X, Y)\n", + "acc = clf.score(X, Y)\n", + "\n", + "print(\"Accuracy:\" ,acc)" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { @@ -8282,7 +18434,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.4" + "version": "3.7.3" } }, "nbformat": 4, diff --git a/1anno/2trimestre/Coding for DataScience/Python/COVID-19 Analysis.ipynb b/1anno/2trimestre/Coding for DataScience/Python/COVID-19 Analysis.ipynb index 443b63ca8..22197c9ab 100644 --- a/1anno/2trimestre/Coding for DataScience/Python/COVID-19 Analysis.ipynb +++ b/1anno/2trimestre/Coding for DataScience/Python/COVID-19 Analysis.ipynb @@ -10,7 +10,7 @@ }, { "cell_type": "code", - "execution_count": 453, + "execution_count": 98, "metadata": {}, "outputs": [ { @@ -59,7 +59,7 @@ " \n", " \n", " \n", - " count\n", + " count\n", " 119.000000\n", " 119.000000\n", " 119.000000\n", @@ -83,7 +83,7 @@ " 119.000000\n", " \n", " \n", - " mean\n", + " mean\n", " 32.195406\n", " 40.126887\n", " 4.663866\n", @@ -107,7 +107,7 @@ " 722.798319\n", " \n", " \n", - " std\n", + " std\n", " 20.305522\n", " 85.839690\n", " 40.731714\n", @@ -131,7 +131,7 @@ " 6079.237047\n", " \n", " \n", - " min\n", + " min\n", " -40.900600\n", " -123.869500\n", " 0.000000\n", @@ -155,7 +155,7 @@ " 0.000000\n", " \n", " \n", - " 25%\n", + " 25%\n", " 26.447150\n", " 3.000000\n", " 0.000000\n", @@ -179,7 +179,7 @@ " 1.000000\n", " \n", " \n", - " 50%\n", + " 50%\n", " 35.443700\n", " 53.000000\n", " 0.000000\n", @@ -203,7 +203,7 @@ " 7.000000\n", " \n", " \n", - " 75%\n", + " 75%\n", " 43.659650\n", " 113.487200\n", " 0.000000\n", @@ -227,7 +227,7 @@ " 101.000000\n", " \n", " \n", - " max\n", + " max\n", " 64.963100\n", " 174.886000\n", " 444.000000\n", @@ -299,7 +299,7 @@ "[8 rows x 41 columns]" ] }, - "execution_count": 453, + "execution_count": 98, "metadata": {}, "output_type": "execute_result" } @@ -313,7 +313,7 @@ }, { "cell_type": "code", - "execution_count": 454, + "execution_count": 99, "metadata": {}, "outputs": [ { @@ -362,10 +362,10 @@ " \n", " \n", " \n", - " 0\n", + " 0\n", " Anhui\n", " Mainland China\n", - " 31.8257\n", + " 31.82570\n", " 117.2264\n", " 1\n", " 9\n", @@ -386,10 +386,10 @@ " 990\n", " \n", " \n", - " 1\n", + " 1\n", " Beijing\n", " Mainland China\n", - " 40.1824\n", + " 40.18240\n", " 116.4142\n", " 14\n", " 22\n", @@ -410,10 +410,10 @@ " 411\n", " \n", " \n", - " 2\n", + " 2\n", " Chongqing\n", " Mainland China\n", - " 30.0572\n", + " 30.05720\n", " 107.8740\n", " 6\n", " 9\n", @@ -434,10 +434,10 @@ " 576\n", " \n", " \n", - " 3\n", + " 3\n", " Fujian\n", " Mainland China\n", - " 26.0789\n", + " 26.07890\n", " 117.9874\n", " 1\n", " 5\n", @@ -458,10 +458,10 @@ " 296\n", " \n", " \n", - " 4\n", + " 4\n", " Gansu\n", " Mainland China\n", - " 36.0611\n", + " 36.06110\n", " 103.8343\n", " 0\n", " 2\n", @@ -482,7 +482,607 @@ " 91\n", " \n", " \n", + " 5\n", + " Guangdong\n", + " Mainland China\n", + " 23.34170\n", + " 113.4244\n", + " 26\n", + " 32\n", + " 53\n", + " 78\n", + " 111\n", + " 151\n", " ...\n", + " 1332\n", + " 1333\n", + " 1339\n", + " 1342\n", + " 1345\n", + " 1347\n", + " 1347\n", + " 1347\n", + " 1348\n", + " 1349\n", + " \n", + " \n", + " 6\n", + " Guangxi\n", + " Mainland China\n", + " 23.82980\n", + " 108.7881\n", + " 2\n", + " 5\n", + " 23\n", + " 23\n", + " 36\n", + " 46\n", + " ...\n", + " 245\n", + " 246\n", + " 249\n", + " 249\n", + " 251\n", + " 252\n", + " 252\n", + " 252\n", + " 252\n", + " 252\n", + " \n", + " \n", + " 7\n", + " Guizhou\n", + " Mainland China\n", + " 26.81540\n", + " 106.8748\n", + " 1\n", + " 3\n", + " 3\n", + " 4\n", + " 5\n", + " 7\n", + " ...\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " 146\n", + " \n", + " \n", + " 8\n", + " Hainan\n", + " Mainland China\n", + " 19.19590\n", + " 109.7453\n", + " 4\n", + " 5\n", + " 8\n", + " 19\n", + " 22\n", + " 33\n", + " ...\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " 168\n", + " \n", + " \n", + " 9\n", + " Hebei\n", + " Mainland China\n", + " 38.04280\n", + " 114.5149\n", + " 1\n", + " 1\n", + " 2\n", + " 8\n", + " 13\n", + " 18\n", + " ...\n", + " 307\n", + " 308\n", + " 309\n", + " 311\n", + " 311\n", + " 311\n", + " 312\n", + " 317\n", + " 318\n", + " 318\n", + " \n", + " \n", + " 10\n", + " Heilongjiang\n", + " Mainland China\n", + " 47.86200\n", + " 127.7615\n", + " 0\n", + " 2\n", + " 4\n", + " 9\n", + " 15\n", + " 21\n", + " ...\n", + " 476\n", + " 479\n", + " 479\n", + " 480\n", + " 480\n", + " 480\n", + " 480\n", + " 480\n", + " 480\n", + " 480\n", + " \n", + " \n", + " 11\n", + " Henan\n", + " Mainland China\n", + " 33.88202\n", + " 113.6140\n", + " 5\n", + " 5\n", + " 9\n", + " 32\n", + " 83\n", + " 128\n", + " ...\n", + " 1265\n", + " 1267\n", + " 1270\n", + " 1271\n", + " 1271\n", + " 1271\n", + " 1271\n", + " 1272\n", + " 1272\n", + " 1272\n", + " \n", + " \n", + " 12\n", + " Hubei\n", + " Mainland China\n", + " 30.97560\n", + " 112.2707\n", + " 444\n", + " 444\n", + " 549\n", + " 761\n", + " 1058\n", + " 1423\n", + " ...\n", + " 62442\n", + " 62662\n", + " 64084\n", + " 64084\n", + " 64287\n", + " 64786\n", + " 65187\n", + " 65596\n", + " 65914\n", + " 66337\n", + " \n", + " \n", + " 13\n", + " Hunan\n", + " Mainland China\n", + " 27.61040\n", + " 111.7088\n", + " 4\n", + " 9\n", + " 24\n", + " 43\n", + " 69\n", + " 100\n", + " ...\n", + " 1010\n", + " 1011\n", + " 1013\n", + " 1016\n", + " 1016\n", + " 1016\n", + " 1016\n", + " 1017\n", + " 1017\n", + " 1018\n", + " \n", + " \n", + " 14\n", + " Inner Mongolia\n", + " Mainland China\n", + " 44.09350\n", + " 113.9448\n", + " 0\n", + " 0\n", + " 1\n", + " 7\n", + " 7\n", + " 11\n", + " ...\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " 75\n", + " \n", + " \n", + " 15\n", + " Jiangsu\n", + " Mainland China\n", + " 32.97110\n", + " 119.4550\n", + " 1\n", + " 5\n", + " 9\n", + " 18\n", + " 33\n", + " 47\n", + " ...\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " 631\n", + " \n", + " \n", + " 16\n", + " Jiangxi\n", + " Mainland China\n", + " 27.61400\n", + " 115.7221\n", + " 2\n", + " 7\n", + " 18\n", + " 18\n", + " 36\n", + " 72\n", + " ...\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 934\n", + " 935\n", + " 935\n", + " \n", + " \n", + " 17\n", + " Jilin\n", + " Mainland China\n", + " 43.66610\n", + " 126.1923\n", + " 0\n", + " 1\n", + " 3\n", + " 4\n", + " 4\n", + " 6\n", + " ...\n", + " 91\n", + " 91\n", + " 91\n", + " 91\n", + " 93\n", + " 93\n", + " 93\n", + " 93\n", + " 93\n", + " 93\n", + " \n", + " \n", + " 18\n", + " Liaoning\n", + " Mainland China\n", + " 41.29560\n", + " 122.6085\n", + " 2\n", + " 3\n", + " 4\n", + " 17\n", + " 21\n", + " 27\n", + " ...\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " 121\n", + " \n", + " \n", + " 19\n", + " Ningxia\n", + " Mainland China\n", + " 37.26920\n", + " 106.1655\n", + " 1\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 7\n", + " ...\n", + " 71\n", + " 71\n", + " 71\n", + " 71\n", + " 71\n", + " 71\n", + " 71\n", + " 72\n", + " 72\n", + " 73\n", + " \n", + " \n", + " 20\n", + " Qinghai\n", + " Mainland China\n", + " 35.74520\n", + " 95.9956\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 6\n", + " ...\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " 18\n", + " \n", + " \n", + " 21\n", + " Shaanxi\n", + " Mainland China\n", + " 35.19170\n", + " 108.8701\n", + " 0\n", + " 3\n", + " 5\n", + " 15\n", + " 22\n", + " 35\n", + " ...\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " 245\n", + " \n", + " \n", + " 22\n", + " Shandong\n", + " Mainland China\n", + " 36.34270\n", + " 118.1498\n", + " 2\n", + " 6\n", + " 15\n", + " 27\n", + " 46\n", + " 75\n", + " ...\n", + " 546\n", + " 749\n", + " 750\n", + " 754\n", + " 755\n", + " 756\n", + " 756\n", + " 756\n", + " 756\n", + " 756\n", + " \n", + " \n", + " 23\n", + " Shanghai\n", + " Mainland China\n", + " 31.20200\n", + " 121.4491\n", + " 9\n", + " 16\n", + " 20\n", + " 33\n", + " 40\n", + " 53\n", + " ...\n", + " 334\n", + " 334\n", + " 335\n", + " 335\n", + " 335\n", + " 336\n", + " 337\n", + " 337\n", + " 337\n", + " 337\n", + " \n", + " \n", + " 24\n", + " Shanxi\n", + " Mainland China\n", + " 37.57770\n", + " 112.2922\n", + " 1\n", + " 1\n", + " 1\n", + " 6\n", + " 9\n", + " 13\n", + " ...\n", + " 132\n", + " 132\n", + " 132\n", + " 132\n", + " 133\n", + " 133\n", + " 133\n", + " 133\n", + " 133\n", + " 133\n", + " \n", + " \n", + " 25\n", + " Sichuan\n", + " Mainland China\n", + " 30.61710\n", + " 102.7103\n", + " 5\n", + " 8\n", + " 15\n", + " 28\n", + " 44\n", + " 69\n", + " ...\n", + " 520\n", + " 525\n", + " 526\n", + " 526\n", + " 527\n", + " 529\n", + " 531\n", + " 534\n", + " 538\n", + " 538\n", + " \n", + " \n", + " 26\n", + " Tianjin\n", + " Mainland China\n", + " 39.30540\n", + " 117.3230\n", + " 4\n", + " 4\n", + " 8\n", + " 10\n", + " 14\n", + " 23\n", + " ...\n", + " 131\n", + " 132\n", + " 135\n", + " 135\n", + " 135\n", + " 135\n", + " 135\n", + " 136\n", + " 136\n", + " 136\n", + " \n", + " \n", + " 27\n", + " Tibet\n", + " Mainland China\n", + " 31.69270\n", + " 88.0924\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 28\n", + " Xinjiang\n", + " Mainland China\n", + " 41.11290\n", + " 85.2401\n", + " 0\n", + " 2\n", + " 2\n", + " 3\n", + " 4\n", + " 5\n", + " ...\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " 76\n", + " \n", + " \n", + " 29\n", + " Yunnan\n", + " Mainland China\n", + " 24.97400\n", + " 101.4870\n", + " 1\n", + " 2\n", + " 5\n", + " 11\n", + " 16\n", + " 26\n", + " ...\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " 174\n", + " \n", + " \n", + " ...\n", " ...\n", " ...\n", " ...\n", @@ -506,10 +1106,610 @@ " ...\n", " \n", " \n", - " 114\n", + " 89\n", + " NaN\n", + " Algeria\n", + " 28.03390\n", + " 1.6596\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 90\n", + " NaN\n", + " Croatia\n", + " 45.10000\n", + " 15.2000\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 3\n", + " 3\n", + " 5\n", + " 6\n", + " \n", + " \n", + " 91\n", + " NaN\n", + " Switzerland\n", + " 46.81820\n", + " 8.2275\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 8\n", + " 8\n", + " 18\n", + " \n", + " \n", + " 92\n", + " NaN\n", + " Austria\n", + " 47.51620\n", + " 14.5501\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 2\n", + " 2\n", + " 3\n", + " 3\n", + " 9\n", + " \n", + " \n", + " 93\n", + " NaN\n", + " Israel\n", + " 31.00000\n", + " 35.0000\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " 3\n", + " 4\n", + " 7\n", + " \n", + " \n", + " 94\n", + " NaN\n", + " Pakistan\n", + " 30.37530\n", + " 69.3451\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 2\n", + " 2\n", + " 2\n", + " 4\n", + " \n", + " \n", + " 95\n", + " NaN\n", + " Brazil\n", + " -14.23500\n", + " -51.9253\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 2\n", + " \n", + " \n", + " 96\n", + " NaN\n", + " Georgia\n", + " 42.31540\n", + " 43.3569\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 97\n", + " NaN\n", + " Greece\n", + " 39.07420\n", + " 21.8243\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 3\n", + " 4\n", + " 4\n", + " \n", + " \n", + " 98\n", + " NaN\n", + " North Macedonia\n", + " 41.60860\n", + " 21.7453\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 99\n", + " NaN\n", + " Norway\n", + " 60.47200\n", + " 8.4689\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 6\n", + " 15\n", + " \n", + " \n", + " 100\n", + " NaN\n", + " Romania\n", + " 45.94320\n", + " 24.9668\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 3\n", + " 3\n", + " \n", + " \n", + " 101\n", + " NaN\n", + " Denmark\n", + " 56.26390\n", + " 9.5018\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 3\n", + " \n", + " \n", + " 102\n", + " NaN\n", + " Estonia\n", + " 58.59530\n", + " 25.0136\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 103\n", + " NaN\n", + " Netherlands\n", + " 52.13260\n", + " 5.2913\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 6\n", + " \n", + " \n", + " 104\n", + " NaN\n", + " San Marino\n", + " 43.94240\n", + " 12.4578\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 105\n", + " NaN\n", + " Belarus\n", + " 53.70980\n", + " 27.9534\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 106\n", + " Montreal, QC\n", + " Canada\n", + " 45.50170\n", + " -73.5673\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 107\n", + " NaN\n", + " Iceland\n", + " 64.96310\n", + " -19.0208\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 108\n", + " NaN\n", + " Lithuania\n", + " 55.16940\n", + " 23.8813\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 109\n", + " NaN\n", + " Mexico\n", + " 23.63450\n", + " -102.5528\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 4\n", + " \n", + " \n", + " 110\n", + " NaN\n", + " New Zealand\n", + " -40.90060\n", + " 174.8860\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 111\n", + " NaN\n", + " Nigeria\n", + " 9.08200\n", + " 8.6753\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " 1\n", + " \n", + " \n", + " 112\n", + " Western Australia\n", + " Australia\n", + " -31.95050\n", + " 115.8605\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 2\n", + " \n", + " \n", + " 113\n", + " NaN\n", + " Ireland\n", + " 53.14240\n", + " -7.6921\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " ...\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 0\n", + " 1\n", + " \n", + " \n", + " 114\n", " NaN\n", " Luxembourg\n", - " 49.8153\n", + " 49.81530\n", " 6.1296\n", " 0\n", " 0\n", @@ -530,10 +1730,10 @@ " 1\n", " \n", " \n", - " 115\n", + " 115\n", " NaN\n", " Monaco\n", - " 43.7333\n", + " 43.73330\n", " 7.4167\n", " 0\n", " 0\n", @@ -554,10 +1754,10 @@ " 1\n", " \n", " \n", - " 116\n", + " 116\n", " NaN\n", " Qatar\n", - " 25.3548\n", + " 25.35480\n", " 51.1839\n", " 0\n", " 0\n", @@ -578,10 +1778,10 @@ " 1\n", " \n", " \n", - " 117\n", + " 117\n", " Portland, OR\n", " US\n", - " 45.5051\n", + " 45.50510\n", " -122.6750\n", " 0\n", " 0\n", @@ -602,10 +1802,10 @@ " 1\n", " \n", " \n", - " 118\n", + " 118\n", " Snohomish County, WA\n", " US\n", - " 48.0330\n", + " 48.03300\n", " -121.8339\n", " 0\n", " 0\n", @@ -631,18 +1831,68 @@ "" ], "text/plain": [ - " Province/State Country/Region Lat Long 1/22/20 \\\n", - "0 Anhui Mainland China 31.8257 117.2264 1 \n", - "1 Beijing Mainland China 40.1824 116.4142 14 \n", - "2 Chongqing Mainland China 30.0572 107.8740 6 \n", - "3 Fujian Mainland China 26.0789 117.9874 1 \n", - "4 Gansu Mainland China 36.0611 103.8343 0 \n", - ".. ... ... ... ... ... \n", - "114 NaN Luxembourg 49.8153 6.1296 0 \n", - "115 NaN Monaco 43.7333 7.4167 0 \n", - "116 NaN Qatar 25.3548 51.1839 0 \n", - "117 Portland, OR US 45.5051 -122.6750 0 \n", - "118 Snohomish County, WA US 48.0330 -121.8339 0 \n", + " Province/State Country/Region Lat Long 1/22/20 \\\n", + "0 Anhui Mainland China 31.82570 117.2264 1 \n", + "1 Beijing Mainland China 40.18240 116.4142 14 \n", + "2 Chongqing Mainland China 30.05720 107.8740 6 \n", + "3 Fujian Mainland China 26.07890 117.9874 1 \n", + "4 Gansu Mainland China 36.06110 103.8343 0 \n", + "5 Guangdong Mainland China 23.34170 113.4244 26 \n", + "6 Guangxi Mainland China 23.82980 108.7881 2 \n", + "7 Guizhou Mainland China 26.81540 106.8748 1 \n", + "8 Hainan Mainland China 19.19590 109.7453 4 \n", + "9 Hebei Mainland China 38.04280 114.5149 1 \n", + "10 Heilongjiang Mainland China 47.86200 127.7615 0 \n", + "11 Henan Mainland China 33.88202 113.6140 5 \n", + "12 Hubei Mainland China 30.97560 112.2707 444 \n", + "13 Hunan Mainland China 27.61040 111.7088 4 \n", + "14 Inner Mongolia Mainland China 44.09350 113.9448 0 \n", + "15 Jiangsu Mainland China 32.97110 119.4550 1 \n", + "16 Jiangxi Mainland China 27.61400 115.7221 2 \n", + "17 Jilin Mainland China 43.66610 126.1923 0 \n", + "18 Liaoning Mainland China 41.29560 122.6085 2 \n", + "19 Ningxia Mainland China 37.26920 106.1655 1 \n", + "20 Qinghai Mainland China 35.74520 95.9956 0 \n", + "21 Shaanxi Mainland China 35.19170 108.8701 0 \n", + "22 Shandong Mainland China 36.34270 118.1498 2 \n", + "23 Shanghai Mainland China 31.20200 121.4491 9 \n", + "24 Shanxi Mainland China 37.57770 112.2922 1 \n", + "25 Sichuan Mainland China 30.61710 102.7103 5 \n", + "26 Tianjin Mainland China 39.30540 117.3230 4 \n", + "27 Tibet Mainland China 31.69270 88.0924 0 \n", + "28 Xinjiang Mainland China 41.11290 85.2401 0 \n", + "29 Yunnan Mainland China 24.97400 101.4870 1 \n", + ".. ... ... ... ... ... \n", + "89 NaN Algeria 28.03390 1.6596 0 \n", + "90 NaN Croatia 45.10000 15.2000 0 \n", + "91 NaN Switzerland 46.81820 8.2275 0 \n", + "92 NaN Austria 47.51620 14.5501 0 \n", + "93 NaN Israel 31.00000 35.0000 0 \n", + "94 NaN Pakistan 30.37530 69.3451 0 \n", + "95 NaN Brazil -14.23500 -51.9253 0 \n", + "96 NaN Georgia 42.31540 43.3569 0 \n", + "97 NaN Greece 39.07420 21.8243 0 \n", + "98 NaN North Macedonia 41.60860 21.7453 0 \n", + "99 NaN Norway 60.47200 8.4689 0 \n", + "100 NaN Romania 45.94320 24.9668 0 \n", + "101 NaN Denmark 56.26390 9.5018 0 \n", + "102 NaN Estonia 58.59530 25.0136 0 \n", + "103 NaN Netherlands 52.13260 5.2913 0 \n", + "104 NaN San Marino 43.94240 12.4578 0 \n", + "105 NaN Belarus 53.70980 27.9534 0 \n", + "106 Montreal, QC Canada 45.50170 -73.5673 0 \n", + "107 NaN Iceland 64.96310 -19.0208 0 \n", + "108 NaN Lithuania 55.16940 23.8813 0 \n", + "109 NaN Mexico 23.63450 -102.5528 0 \n", + "110 NaN New Zealand -40.90060 174.8860 0 \n", + "111 NaN Nigeria 9.08200 8.6753 0 \n", + "112 Western Australia Australia -31.95050 115.8605 0 \n", + "113 NaN Ireland 53.14240 -7.6921 0 \n", + "114 NaN Luxembourg 49.81530 6.1296 0 \n", + "115 NaN Monaco 43.73330 7.4167 0 \n", + "116 NaN Qatar 25.35480 51.1839 0 \n", + "117 Portland, OR US 45.50510 -122.6750 0 \n", + "118 Snohomish County, WA US 48.03300 -121.8339 0 \n", "\n", " 1/23/20 1/24/20 1/25/20 1/26/20 1/27/20 ... 2/20/20 2/21/20 \\\n", "0 9 15 39 60 70 ... 987 988 \n", @@ -650,7 +1900,57 @@ "2 9 27 57 75 110 ... 567 572 \n", "3 5 10 18 35 59 ... 293 293 \n", "4 2 2 4 7 14 ... 91 91 \n", + "5 32 53 78 111 151 ... 1332 1333 \n", + "6 5 23 23 36 46 ... 245 246 \n", + "7 3 3 4 5 7 ... 146 146 \n", + "8 5 8 19 22 33 ... 168 168 \n", + "9 1 2 8 13 18 ... 307 308 \n", + "10 2 4 9 15 21 ... 476 479 \n", + "11 5 9 32 83 128 ... 1265 1267 \n", + "12 444 549 761 1058 1423 ... 62442 62662 \n", + "13 9 24 43 69 100 ... 1010 1011 \n", + "14 0 1 7 7 11 ... 75 75 \n", + "15 5 9 18 33 47 ... 631 631 \n", + "16 7 18 18 36 72 ... 934 934 \n", + "17 1 3 4 4 6 ... 91 91 \n", + "18 3 4 17 21 27 ... 121 121 \n", + "19 1 2 3 4 7 ... 71 71 \n", + "20 0 0 1 1 6 ... 18 18 \n", + "21 3 5 15 22 35 ... 245 245 \n", + "22 6 15 27 46 75 ... 546 749 \n", + "23 16 20 33 40 53 ... 334 334 \n", + "24 1 1 6 9 13 ... 132 132 \n", + "25 8 15 28 44 69 ... 520 525 \n", + "26 4 8 10 14 23 ... 131 132 \n", + "27 0 0 0 0 0 ... 1 1 \n", + "28 2 2 3 4 5 ... 76 76 \n", + "29 2 5 11 16 26 ... 174 174 \n", ".. ... ... ... ... ... ... ... ... \n", + "89 0 0 0 0 0 ... 0 0 \n", + "90 0 0 0 0 0 ... 0 0 \n", + "91 0 0 0 0 0 ... 0 0 \n", + "92 0 0 0 0 0 ... 0 0 \n", + "93 0 0 0 0 0 ... 0 1 \n", + "94 0 0 0 0 0 ... 0 0 \n", + "95 0 0 0 0 0 ... 0 0 \n", + "96 0 0 0 0 0 ... 0 0 \n", + "97 0 0 0 0 0 ... 0 0 \n", + "98 0 0 0 0 0 ... 0 0 \n", + "99 0 0 0 0 0 ... 0 0 \n", + "100 0 0 0 0 0 ... 0 0 \n", + "101 0 0 0 0 0 ... 0 0 \n", + "102 0 0 0 0 0 ... 0 0 \n", + "103 0 0 0 0 0 ... 0 0 \n", + "104 0 0 0 0 0 ... 0 0 \n", + "105 0 0 0 0 0 ... 0 0 \n", + "106 0 0 0 0 0 ... 0 0 \n", + "107 0 0 0 0 0 ... 0 0 \n", + "108 0 0 0 0 0 ... 0 0 \n", + "109 0 0 0 0 0 ... 0 0 \n", + "110 0 0 0 0 0 ... 0 0 \n", + "111 0 0 0 0 0 ... 0 0 \n", + "112 0 0 0 0 0 ... 0 0 \n", + "113 0 0 0 0 0 ... 0 0 \n", "114 0 0 0 0 0 ... 0 0 \n", "115 0 0 0 0 0 ... 0 0 \n", "116 0 0 0 0 0 ... 0 0 \n", @@ -663,7 +1963,57 @@ "2 573 575 576 576 576 576 576 576 \n", "3 293 293 293 294 294 296 296 296 \n", "4 91 91 91 91 91 91 91 91 \n", + "5 1339 1342 1345 1347 1347 1347 1348 1349 \n", + "6 249 249 251 252 252 252 252 252 \n", + "7 146 146 146 146 146 146 146 146 \n", + "8 168 168 168 168 168 168 168 168 \n", + "9 309 311 311 311 312 317 318 318 \n", + "10 479 480 480 480 480 480 480 480 \n", + "11 1270 1271 1271 1271 1271 1272 1272 1272 \n", + "12 64084 64084 64287 64786 65187 65596 65914 66337 \n", + "13 1013 1016 1016 1016 1016 1017 1017 1018 \n", + "14 75 75 75 75 75 75 75 75 \n", + "15 631 631 631 631 631 631 631 631 \n", + "16 934 934 934 934 934 934 935 935 \n", + "17 91 91 93 93 93 93 93 93 \n", + "18 121 121 121 121 121 121 121 121 \n", + "19 71 71 71 71 71 72 72 73 \n", + "20 18 18 18 18 18 18 18 18 \n", + "21 245 245 245 245 245 245 245 245 \n", + "22 750 754 755 756 756 756 756 756 \n", + "23 335 335 335 336 337 337 337 337 \n", + "24 132 132 133 133 133 133 133 133 \n", + "25 526 526 527 529 531 534 538 538 \n", + "26 135 135 135 135 135 136 136 136 \n", + "27 1 1 1 1 1 1 1 1 \n", + "28 76 76 76 76 76 76 76 76 \n", + "29 174 174 174 174 174 174 174 174 \n", ".. ... ... ... ... ... ... ... ... \n", + "89 0 0 0 1 1 1 1 1 \n", + "90 0 0 0 1 3 3 5 6 \n", + "91 0 0 0 1 1 8 8 18 \n", + "92 0 0 0 2 2 3 3 9 \n", + "93 1 1 1 1 2 3 4 7 \n", + "94 0 0 0 0 2 2 2 4 \n", + "95 0 0 0 0 1 1 1 2 \n", + "96 0 0 0 0 1 1 1 1 \n", + "97 0 0 0 0 1 3 4 4 \n", + "98 0 0 0 0 1 1 1 1 \n", + "99 0 0 0 0 1 1 6 15 \n", + "100 0 0 0 0 1 1 3 3 \n", + "101 0 0 0 0 0 1 1 3 \n", + "102 0 0 0 0 0 1 1 1 \n", + "103 0 0 0 0 0 1 1 6 \n", + "104 0 0 0 0 0 1 1 1 \n", + "105 0 0 0 0 0 0 1 1 \n", + "106 0 0 0 0 0 0 1 1 \n", + "107 0 0 0 0 0 0 1 1 \n", + "108 0 0 0 0 0 0 1 1 \n", + "109 0 0 0 0 0 0 1 4 \n", + "110 0 0 0 0 0 0 1 1 \n", + "111 0 0 0 0 0 0 1 1 \n", + "112 0 0 0 0 0 0 0 2 \n", + "113 0 0 0 0 0 0 0 1 \n", "114 0 0 0 0 0 0 0 1 \n", "115 0 0 0 0 0 0 0 1 \n", "116 0 0 0 0 0 0 0 1 \n", @@ -673,7 +2023,7 @@ "[119 rows x 43 columns]" ] }, - "execution_count": 454, + "execution_count": 99, "metadata": {}, "output_type": "execute_result" } @@ -684,7 +2034,7 @@ }, { "cell_type": "code", - "execution_count": 455, + "execution_count": 100, "metadata": {}, "outputs": [ { @@ -731,7 +2081,7 @@ " 1128]" ] }, - "execution_count": 455, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } @@ -749,7 +2099,7 @@ }, { "cell_type": "code", - "execution_count": 456, + "execution_count": 101, "metadata": {}, "outputs": [], "source": [ @@ -769,7 +2119,7 @@ }, { "cell_type": "code", - "execution_count": 457, + "execution_count": 102, "metadata": {}, "outputs": [ { @@ -800,31 +2150,31 @@ " \n", " \n", " \n", - " 0\n", + " 0\n", " 1/22/20\n", " 0\n", " 1\n", " \n", " \n", - " 1\n", + " 1\n", " 1/23/20\n", " 0\n", " 2\n", " \n", " \n", - " 2\n", + " 2\n", " 1/24/20\n", " 0\n", " 3\n", " \n", " \n", - " 3\n", + " 3\n", " 1/25/20\n", " 0\n", " 4\n", " \n", " \n", - " 4\n", + " 4\n", " 1/26/20\n", " 0\n", " 5\n", @@ -842,7 +2192,7 @@ "4 1/26/20 0 5" ] }, - "execution_count": 457, + "execution_count": 102, "metadata": {}, "output_type": "execute_result" } @@ -853,7 +2203,7 @@ }, { "cell_type": "code", - "execution_count": 458, + "execution_count": 103, "metadata": {}, "outputs": [ { @@ -1989,20 +3339,20 @@ "
\n", " \n", " \n", - "
\n", + "
\n", "