mirror of
https://github.com/Andreaierardi/Master-DataScience-Notes.git
synced 2025-01-21 00:37:36 +01:00
up
This commit is contained in:
parent
b0ff1f9a9d
commit
84e4aee102
@ -1,15 +0,0 @@
|
||||
\relax
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {1}Lecture 1 - 09-03-2020}{1}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Introduction}{1}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {paragraph}{Outline}{3}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {2}Lecture 10 - 07-04-2020}{4}\protected@file@percent }
|
||||
\@writefile{toc}{\contentsline {subsection}{\numberline {2.1}TO BE DEFINE}{4}\protected@file@percent }
|
||||
\citation{Gil:02}
|
||||
\bibstyle{abbrv}
|
||||
\bibdata{main}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {3}Previous work}{6}\protected@file@percent }
|
||||
\newlabel{previous work}{{3}{6}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {4}Results}{6}\protected@file@percent }
|
||||
\newlabel{results}{{4}{6}}
|
||||
\@writefile{toc}{\contentsline {section}{\numberline {5}Conclusions}{6}\protected@file@percent }
|
||||
\newlabel{conclusions}{{5}{6}}
|
File diff suppressed because it is too large
Load Diff
Binary file not shown.
Binary file not shown.
@ -114,14 +114,15 @@ It is typical in supervised learning.
|
||||
How good the algorithm did?
|
||||
\\
|
||||
|
||||
\[l(y,\hat{y})\leq0 \]
|
||||
\[\ell(y,\hat{y})\leq0 \]
|
||||
|
||||
were $y $ is true label and $\hat{y}$ is predicted label
|
||||
\\\\
|
||||
We want to build a spam filter were $0$ is not spam and $1$ is spam and that
|
||||
Classification task:
|
||||
\\\\
|
||||
$f(n) = \begin{cases} 0, & \mbox{if } \hat{y} = y
|
||||
$
|
||||
\ell(y,\hat{y} = \begin{cases} 0, & \mbox{if } \hat{y} = y
|
||||
\\ 1, &
|
||||
\mbox{if }\hat{y} \neq y
|
||||
\end{cases}
|
||||
@ -163,6 +164,115 @@ Our new and exciting results are described in Section~\ref{results}.
|
||||
Finally, Section~\ref{conclusions} gives the conclusions.
|
||||
|
||||
|
||||
\section{Lecture 2 - 07-04-2020}
|
||||
|
||||
\subsection{Argomento}
|
||||
Classification tasks\\
|
||||
Semantic label space Y\\
|
||||
Categorization Y finite and\\ small
|
||||
Regression Y appartiene ad |R\\
|
||||
How to predict labels?\\
|
||||
Using the lost function —> ..\\
|
||||
Binary classification\\
|
||||
Label space is Y = { -1, +1 }\\
|
||||
Zero-one loss\\
|
||||
|
||||
$
|
||||
\ell(y,\hat{y} = \begin{cases} 0, & \mbox{if } \hat{y} = y
|
||||
\\ 1, &
|
||||
\mbox{if }\hat{y} \neq y
|
||||
\end{cases}
|
||||
\\\\
|
||||
FP \quad \hat{y} = 1,\quad y = -1\\
|
||||
FN \quad \hat{y} = -1, \quad y = 1
|
||||
$
|
||||
\\\\
|
||||
Losses for regression?\\
|
||||
$y$, and $\hat{y} \in \barra{R}$, \\so they are numbers!\\
|
||||
One example of loss is the absolute loss: absolute difference between numbers\\
|
||||
\subsection{Loss}
|
||||
\subsubsection{Absolute Loss}
|
||||
$$\ell(y,\hat{y} = | y - \hat{y} | \Rightarrow absolute \quad loss\\ $$
|
||||
--- DISEGNO ---\\\\
|
||||
Some inconvenient properties:
|
||||
|
||||
\begin{itemize}
|
||||
\item ...
|
||||
\item Derivative only two values (not much informations)
|
||||
\end{itemize}
|
||||
|
||||
\subsubsection{Square Loss}
|
||||
$$ \ell(y,\hat{y} = ( y - \hat{y} )^2 \Rightarrow \textit{square loss}\\$$
|
||||
-- DISEGNO ---\\
|
||||
Derivative :
|
||||
\begin{itemize}
|
||||
\item more informative
|
||||
\item and differentible
|
||||
\end{itemize}
|
||||
Real numbers as label $\rightarrow$ regression.\\
|
||||
Whenever taking difference between two prediction make sense (value are numbers) then we are talking about regression problem.\\
|
||||
Classification as categorization when we have small finite set.\\\\
|
||||
|
||||
\subsubsection{Example of information of square loss}
|
||||
|
||||
$\ell(y,\hat{y}) = ( y - \hat{y} )^2 = F(y)
|
||||
\\
|
||||
F'(\hat(y)) = -2 \cdot (y-\hat{y})
|
||||
$
|
||||
\begin{itemize}
|
||||
\item I'm under sho or over and how much
|
||||
\item How much far away from the truth
|
||||
\end{itemize}
|
||||
$ \ell(y,\hat{y}) = | y- \hat{y}| = F(y') \cdot F'(y) = Sign (y-\hat{y} )\\\\ $
|
||||
Question about the future\\
|
||||
Will it rain tomorrow?\\
|
||||
We have a label and this is a binary classification problem.\\
|
||||
My label space will be Y = { “rain”, “no rain” }\\
|
||||
We don’t get a binary prediction, we need another space called prediction space (or decision space). Z = [0,1]\\
|
||||
$
|
||||
Z = [0,1]
|
||||
\hat{y} \in Z \qquad \hat{y} \textit{ is my prediction of rain tomorrow}
|
||||
\\
|
||||
\hat{y} = \barra{P} (y = "rain") \quad \rightarrow \textit{my guess is tomorrow will rain (not sure)}\\\\
|
||||
y \in Y \qquad \hat{y} \in Z \\quad \textit{How can we manage loss?}
|
||||
\\
|
||||
\textit{Put numbers in our space}\\
|
||||
\{1,0\} \quad \textit{where 1 is rain and 0 no rain}\\\\
|
||||
$
|
||||
I measure how much I’m far from reality.\\
|
||||
So loss behave like this and the punishment is gonna go linearly??\\
|
||||
\[26..\]\\
|
||||
However is pretty annoying. Sometime I prefer to punish more so i going quadratically instead of linearly.\\
|
||||
There are other way to punish this.\\
|
||||
I called \textbf{logarithmic loss}\\
|
||||
We are extending a lot the range of our loss function.\\
|
||||
|
||||
$$
|
||||
\ell(y,\hat{y}) = | y- \hat{y}| \in |0,1| \qquad \ell(y,\hat{y}) = ( y- \hat{y})^2 \in |0,1|
|
||||
$$
|
||||
\\
|
||||
If i want to expand the punishment i use logarithmic loss\\
|
||||
\\
|
||||
$ \ell(y,\hat{y} = \begin{cases} ln \dfrac{1}{\hat{y}, & \mbox{if } y = 1 \textit{(rain)}
|
||||
\\ ln \frac{1}{1-\hat{y}}, &
|
||||
\mbox{if } y = 0 \textit{(no rain}
|
||||
\end{cases}
|
||||
\\\\
|
||||
F(\hat{y}) \rightarrow can be 0 if i predict with certainty
|
||||
|
||||
\mbox{if} \hat{y} = 0.5 \qquad \ell(y, \dfrac{1}{2}) = ln 2 \quad \textit{costnat losses in each prediction}\\\\
|
||||
\lim_{\hat{y}\to\0^+} \ell(1,\hat{y}) = + \inf
|
||||
|
||||
$
|
||||
|
||||
\section{Lecture 3 - 07-04-2020}
|
||||
\section{Lecture 4 - 07-04-2020}
|
||||
\section{Lecture 5 - 07-04-2020}
|
||||
\section{Lecture 6 - 07-04-2020}
|
||||
\section{Lecture 7 - 07-04-2020}
|
||||
\section{Lecture 8 - 07-04-2020}
|
||||
\section{Lecture 9 - 07-04-2020}
|
||||
|
||||
\section{Lecture 10 - 07-04-2020}
|
||||
|
||||
\subsection{TO BE DEFINE}
|
||||
|
Loading…
x
Reference in New Issue
Block a user