diff --git a/1year/2trimester/Coding for Data Science - Python language/Python/Examples/.ipynb_checkpoints/Diamonds ML regression-checkpoint.ipynb b/1year/2trimester/Coding for Data Science - Python language/Python/Examples/.ipynb_checkpoints/Diamonds ML regression-checkpoint.ipynb index 0d345c551..18b5ada9b 100644 --- a/1year/2trimester/Coding for Data Science - Python language/Python/Examples/.ipynb_checkpoints/Diamonds ML regression-checkpoint.ipynb +++ b/1year/2trimester/Coding for Data Science - Python language/Python/Examples/.ipynb_checkpoints/Diamonds ML regression-checkpoint.ipynb @@ -623,10 +623,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "E:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:432: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning.\n", + " FutureWarning)\n", + "E:\\ProgramData\\Anaconda3\\lib\\site-packages\\sklearn\\linear_model\\logistic.py:469: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning.\n", + " \"this warning.\", FutureWarning)\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "SCORE: 0.009547645532072673 \n", + "--------------\n" + ] + } + ], "source": [ + "from sklearn import linear_model\n", "from sklearn.linear_model import LogisticRegression\n", "logistic = linear_model.LogisticRegression(random_state=0) # create object for the class\n", "logistic.fit(X_train, y_train) # perform logistic regression\n", @@ -636,13 +656,30 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "1662 3370\n", + "1882 3321\n", + "776 698\n", + "530 646\n", + "1882 4839\n", + "1076 1851\n", + "984 1624\n", + "802 665\n", + "872 596\n", + "394 1154\n" + ] + } + ], "source": [ - "Y_pred = logistic.predict(X_test, y_test) # make predictions\n", "for X,y in list(zip(X_test, y_test))[:10]:\n", - " print(Y_pred[x], y)" + " print(logistic.predict([X])[0], y)\n", + " " ] }, { @@ -650,11 +687,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "for X,y in list(zip(X_test, y_test))[:10]:\n", - " print(logistic.predict([X])[0], y)\n", - " " - ] + "source": [] } ], "metadata": { @@ -677,5 +710,5 @@ } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } diff --git a/1year/2trimester/Coding for Data Science - Python language/Python/Examples/Diamonds ML regression.ipynb b/1year/2trimester/Coding for Data Science - Python language/Python/Examples/Diamonds ML regression.ipynb index 4ea9bbd60..18b5ada9b 100644 --- a/1year/2trimester/Coding for Data Science - Python language/Python/Examples/Diamonds ML regression.ipynb +++ b/1year/2trimester/Coding for Data Science - Python language/Python/Examples/Diamonds ML regression.ipynb @@ -656,25 +656,30 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 9, "metadata": {}, "outputs": [ { - "ename": "TypeError", - "evalue": "predict() takes 2 positional arguments but 3 were given", - "output_type": "error", - "traceback": [ - "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", - "\u001b[1;32m\u001b[0m in \u001b[0;36m\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mY_pred\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mlogistic\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;31m# make predictions\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;32mfor\u001b[0m \u001b[0mX\u001b[0m\u001b[1;33m,\u001b[0m\u001b[0my\u001b[0m \u001b[1;32min\u001b[0m \u001b[0mlist\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mzip\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my_test\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;36m10\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mY_pred\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mx\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0my\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n", - "\u001b[1;31mTypeError\u001b[0m: predict() takes 2 positional arguments but 3 were given" + "name": "stdout", + "output_type": "stream", + "text": [ + "1662 3370\n", + "1882 3321\n", + "776 698\n", + "530 646\n", + "1882 4839\n", + "1076 1851\n", + "984 1624\n", + "802 665\n", + "872 596\n", + "394 1154\n" ] } ], "source": [ - "Y_pred = logistic.predict(X_test, y_test) # make predictions\n", "for X,y in list(zip(X_test, y_test))[:10]:\n", - " print(Y_pred[x], y)" + " print(logistic.predict([X])[0], y)\n", + " " ] }, { @@ -682,11 +687,7 @@ "execution_count": null, "metadata": {}, "outputs": [], - "source": [ - "for X,y in list(zip(X_test, y_test))[:10]:\n", - " print(logistic.predict([X])[0], y)\n", - " " - ] + "source": [] } ], "metadata": {