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Abstract: Cause and effect is a basic knowledge driven by theoretical and empirical
considerations. Several tools have been proposed to map cause-and-effect relationships,
with some more heuristics and some highly quantitative. This article covers the Ishikawa
fishbone diagram, structural equation models, Bayesian networks, and causal networks.

1 Introduction

Statisticians have always been careful not to confuse correlation with causation[1]. A famous example,
derived from the statistics on the population of Oldenburg in Germany and the number of observed storks
in the city in 1930–1936, demonstrates why correlation does not imply causation[2]. Figure 1 is a scatter
plot of population size versus number of storks.

If we look at the data in Table 1, we quickly realize that time is a lurking variable and that both variables
in the scatter plot increase with time, hence their correlation. Since storks need chimneys to make their
nests, more buildings, due to an increase in population, might explain why more storks are nesting in
Oldenburg.

Correlation is therefore not causation, and scatter plots are not sufficient to describe cause-and-effect
relationships. Causality is, however, a basic element of the scientific method and management skills. Estab-
lishment of causality relies on a combination of axiomatic thought and empirical evidence derived from
observational studies or designed experiments. Cause-and-effect diagrams are used to present such
relationships. We will present three such diagrams: Ishikawa diagrams, structural equation models, and
Bayesian networks. We will also discuss causal networks and the application of counterfactuals and the
“do” calculus on such networks.
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Figure 1. Scatter plot of number of storks versus population size.

Table 1. Population and number of storks, by year.

Year 1930 1931 1932 1933 1934 1935 1936

Population in thousands 50 52 64 67 69 73 76
Number of storks 130 150 175 190 240 245 250

2 Ishikawa Diagrams

In the summer of 1943, at the University of Tokyo, Dr Kaoru Ishikawa was explaining to the engineers
from the Kawasaki Steel Works how various factors can be sorted out and related in specific ways. This
was the origin of the cause-and-effect diagram, later called the Ishikawa diagram. The Ishikawa diagram,
also called a fishbone diagram, came into wide use in the Japanese industry and became a critical tool
for quality control and quality improvement all over the world. It is one of the seven essential tools for
quality and process improvement, also called the magnificent seven[3]. The Ishikawa diagram is used to
identify, explore, and display possible causes of a problem or event. A typical diagram will have 4–6 main
branches for causes affecting one type of event. Traditional classifications of these branches are five Ms:
Manpower, Machines, Materials, Measurements, and Methods or, in administrative areas, the four Ps:
Policies, Procedures, People, and Plant. A modern variation on the five Ms uses six categories: People,
Machines, Materials, Measurements, Methods, and Environment. These are only suggestions typically
used to jump-start the brainstorming session in which the diagram is completed. Figure 2 is an example
from an improvement project initiated by the dean of a school of management to improve the operation
of his office, and, in particular, the scheduling of appointments[4]. The improvement team, consisting of
the dean, two professors at the school, and the two secretaries at the dean’s office, brainstormed to list
causes for an unusually high number of “collisions” in the dean’s schedule. Many meetings with the dean
were delayed or even canceled at the last minute. This problem led to complaints by the faculty and staff
about the poor service level of the dean’s office. The possible causes that were listed included the open-
door approach, lack of meeting agendas, interruptions of all sorts, and no scheduled end time to meetings.
Following some more analysis, the dean’s office instituted a procedure where all meetings were scheduled
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Figure 2. Ishikawa diagram of causes for scheduling collisions at a dean’s office.

with an agenda and an end time. A confirmation note, with this information, was sent ahead of time to the
meeting participants. “Collisions” dropped by 50%, and the dean’s office became a model of service quality
on campus. The secretaries even started planning teleconference meetings for specific topics at everyone’s
satisfaction. For more on Ishikawa diagrams, see Ishikawa[3], Brassard[5], and Kenett and Zacks[6].

3 Structural Equation Models

The geneticist Sewall Wright developed a “method of path coefficients,” which is partly graphical and partly
algebraic to explain genetic phenomena. Path analysis allows researchers to compute the magnitude of
cause-and-effect relationships from correlation measurements, provided the path diagram represents cor-
rectly the causal process underlying the data[7, 8]. Later, economists developed a similar approach labeled
structural equation modeling. We use here both terms interchangeably.

Structural equation modeling involves the specification of an underpinning linear regression model
incorporating the structural relationships between unobserved and latent variables, together with a num-
ber of observed or measured indicator variables.

Structural equation models assume that there is a causal structure among a set of latent variables, and
that the observed variables are indicators of the latent variables. The latent variables may appear as linear
combinations of observed variables, or they may be intervening variables in a causal chain.
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Figure 3. The American customer satisfaction survey index model.

As latent variables are, by definition, unobservable, their measurement must be obtained indirectly. This
is done by linking one or more observed variables to each unobserved variable. A fully specified structural
equation model is potentially a complex interplay between a large number of observed and unobserved
variables, and residual and error terms. For more on structural equation models, see Bollen[9], Hoyle[10],
and Kline[11].

The American customer satisfaction index (ACSI) is a prime application of a structural equation model. It
uses telephone customer interviews, based on a structured questionnaire, as inputs. The latent variables in
the ACSI model are presented in Figure 3 as a cause-and-effect model with indices for drivers of satisfaction
on the left-hand side (customer expectations, perceived quality, and perceived value), satisfaction (ACS) in
the center, and outcomes of satisfaction on the right-hand side (customer complaints and customer loyalty,
including customer retention and price tolerance). The indices are multivariable components measured
by several questions that are weighted within the model. The questions assess customer evaluations of the
determinants of each index. Indices are reported on a 0–100 scale. The survey and modeling methodology
quantifies the strength of the effect of the index on the left to the one to which the arrow points on the
right. These arrows represent “impacts.” The ACSI model is self-weighting, to maximize the explanation of
customer satisfaction (ACS) on customer loyalty. Looking at the indices and impacts, users can determine
which drivers of satisfaction, if improved, would have the strongest effect on customer loyalty. For more
on ACSI, see Fornell et al.[12–15].

An example of such an integrated model was implemented by Sears, Roebuck and Company into what
they called the employee–customer-profit model. The cause-and-effect chain links three strategic initiatives
of Sears: (i) a compelling place to work, (ii) a compelling place to shop, and (iii) a compelling place to invest
in. In order to promote these initiatives, Sears introduced an integrated structural equation model linking
how employees felt about working at Sears, how their behavior affected customers’ shopping experience,
and how this experience affected profits. The model identifies the drivers to employee retention, customer
retention, customer recommendation, and profits. Specifically, the model predicts that an increase in
employee attitude by 5 units results in an increase in customer impression by 1.3 units, and this in turn adds
0.5% to the revenue[16]. For more on integrated management models, see Kenett[17] and Kenett and Lavi[18].

4 Bayesian Networks

Bayesian networks combine Bayesian theory with graph theory for inferring probabilistic relationships
among variables. They are used to handle complex problems in which interactions of variables are too
intricate for description by an analytic model. Bayesian networks represent the current knowledge by
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Figure 4. An example of causal network. Source: Adapted from Lauritzen and Spiegelhalter[27].

graphically linking associated variables. For example, consider a patient that visits a clinic with health-
related problems. The physician examining her wants to identify the disease and prescribe the correct
therapy. Figure 4 is a graph representing variables associated to tuberculosis and lung cancer. At the top
are variables that describe the domain (“visit Africa,” “smoking”). The domain knowledge experts have
linked variables describing an effect (i.e., “tuberculosis”) with possible causes (i.e., visiting Africa may cause
tuberculosis).

Bayesian networks are directed acyclic graphs (DAGs) in which nodes represent random variables, and
arcs represent direct probabilistic dependencies among them. The structure of the directed graph provides
insights into the interactions among the variables and allows for prediction of effects of external manipu-
lation. Prediction consists of conditioning a parent variable to determine its effect on variables depending
on it on the graph, called its descendants. Diagnosis is obtained by conditioning on an effect, in order to
ascertain the profile of the parent variables linked to that effect. Conditional dependence probabilities,
estimated from data and/or elicitated from expert opinion, are used to generate a network representing
learned associations. Bayesian networks represent the quantitative relationships among the modeled vari-
ables. Let X1, … , Xn be a set of variables and P(X1, … , Xn) be the joint probability defining the knowledge
about the problem domain.

Numerically, a Bayesian network represents the joint probability distribution among the n variables.
This distribution is described efficiently by exploring the probabilistic dependencies among the modeled
variables, and the model size is reduced by conditional independence. Each node, Xi, is a random vari-
able either with discrete or continuous states and is described by a probability distribution, P(Xi| parents
(Xi)), conditional on its direct predecessors and quantifying parents’ effects on the node. Nodes with no
predecessors are described by prior probability distributions. Then, owing to the Markov property and
conditional independence, the joint distribution is simplified through conditional distributions to

P(X1,X2, … ,Xn) =
n∏

i=1
P (Xi| parents (Xi)) (1)

A set of oriented arcs links a pair of nodes and identifies probabilistic dependencies. For more on
Bayesian networks, see Pearl[19, 20], Pearl and Mackenzie[21], Cowell[22], and Kenett[23].

5 Causal Networks

Causes, or interventions, have potential effects, different from what would have been otherwise observed
under no intervention. To evaluate such effects, one needs to address potential outcomes. Consider people
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with headaches. If they take a pain relief tablet, we can observe its effect. We cannot observe, however, what
would have happened, had they not taken the tablet. This corresponds to an unobserved potential outcome.
Randomized control trials (RCTs) are considered the gold standard for assessing causality in interventions.
A simple RCT has two arms, one with treated units, and the other with untreated control, placebo, units.
When the allocation to arms is randomized, the difference in outcomes is attributed to the treatment.
In practice, RCTs are affected by bias such as compliance to treatment, missing data, and nonignorable
differences in treatment. Moreover, for ethical and technical reasons, RCTs are not always possible, and
using observational data is necessary. In such studies, one collects covariate variables and outcome infor-
mation. To study the effect of treatment with observational data (but not only), one needs to control for
confounding covariates by regression or other statistical models. The difference between observed out-
comes (treated patients) and potential outcomes (what would have happened had these patients not been
treated) can be used to assess the effect of “counterfactual” conditions. Such counterfactuals are thought
experiments, not physically carried out (such as applying treatment to an untreated group). By consid-
ering potential outcomes scenarios as missing data, Rosenbaum and Rubin[24] developed mathematical
models for computing propensity scores (PSs). These PSs correspond to predicted probability of group
membership, for example, treatment versus control group. PSs are based on observed predictors, usu-
ally obtained from logistic regression, to create a counterfactual group. Causal networks, or DAG causal
graph models (Pearl[20, 21], offer a different approach based on graphical models. Causal networks require
the researcher/analyst to state their causal assumptions explicitly, so that the study design and analysis that
follows makes sense. In contrast to structural equation models, latent variables need not be explicitly listed,
but the impact of unobserved variables can be accounted for. Causal networks, together with a causal cal-
culus labeled “do” calculus, are used to predict the values of as-yet-unobserved variables from the values
of observed ones. Since the arrows in a Bayesian network do not necessarily have a causal interpretation,
Bayesian networks differ from causal networks. Specifically, the same joint distribution (X, Y ) can be rep-
resented equally well by X →Y or X ←Y . However, if we accept that causes must be informative about
their direct effects, then only nodes that are adjacent to a given node in a Bayesian network are candidates
to be its direct causes or direct effects. Exogenously setting the values of one or more variables in a causal
DAG model, to specified values, can change the probability distributions of the variables into which they
point (their “children”), and hence the probability distributions of their more remote descendants. Exoge-
nously specifying the values of some variables makes it unnecessary to infer their values, so that they can
be disconnected from their predecessors in the DAG before their specified values are propagated through
the rest of the model. As an example, consider the causal DAG model X →Y →Z with CPTs P(Y = y|X = x)
representing the conditional probability that random variable Y has value y given that random variable X
has value x; P(z|y) for Z; and P(x) for the marginal distribution of X. Then, setting X to a specific value x*,
an operation denoted by “do(x*),” has the effect of changing the distribution of Y from its unconditional
distribution P(y)=ΣxP(y|x)P(x) to the new distribution P(y|x*). The interpretation is that setting X to x*
causes the value of Y to be drawn from distribution P(y|x*). Then Z, in turn, is drawn from the distribution
P(z|do(x*))=ΣyP(z|y)P(y|x*) instead of P(z)=ΣyP(z|y)P(y), and so the effect of setting X to x* propagates
through the distribution of Y to affect the distribution of Z. Likewise, the effect on Z of exogenously set-
ting the value of Y to a specific value y* is calculated by disconnecting X from Y in the DAG, and using the
CPT for Z to determine P(z|do(y*))=P(z|y*). A causal or directed path from X to Z is a path that can be
traversed along the direction of the arrows in the causal diagram.

In a chain junction, X →Y →Z, or a fork junction, X ←Y →Z, controlling for Y prevents information
about X from getting to Z. On the other hand, if X and Z are independent, in a collider chain, X →Y ←Z,
controlling for Y creates a dependence between them. To establish if we need to control for variables on a
DAG, we apply the back-door path criterion[20]. A back-door path from X to Z is one that contains an arrow
into X, and such that the other arrows in the path(s) from X to Z can be traversed in either direction along
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or against the direction of the arrows. In determining the causal effect of X on Z, one should disconnect
all spurious (back-door) paths from X to Z. In each spurious path, one should condition on at least one
variable that is not a collider (two arrows pointing to it) in each of the spurious paths. One should also
leave all directed paths from cause to effect unperturbed and not condition on descendants of the cause.
Pearl[20, 21] elaborates on this approach with numerous application examples.

An additional feature of causal networks is that they can be used to generalize findings from one study
and make them relevant in another context. For more on this aspect, also called transportability, see
Pearl[25]. Generalizability of findings is related to external validity of a study and is also the sixth dimension
of the information quality (InfoQ) framework presented in Kenett and Shmueli[26].
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