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Statistics: A Life Cycle View

Ron 5. Kenett ABSTRACT Statistics has gained a el only on
KPA Group, Ra’anana, kael mathematical modeling data collection Problem ¢ is ahout Impact
an expanded view of the mole of statis Elicitation ustry, and T -
service organizations. Such an approa 18 TEAITOwW -7 Assessment
. o, Wiew of statistics outlined above in an to\repoation it a5 the leading ’///’/ /7
Information quallty profession in the analytics domain, Thi w oveates a need for focused ////’/ ///
research activities and the development o n—--" / S
InfoQ(f,X,q,U) = libomiion of suatisticians with expens Goal A ,# | Communication
U(f(Xlg)) Specifically we discus here a “life cle @ Formulation  flem ,__--| ofFindings
elicitation, (2) goal formulation, (3) data N AT
- ) fon of findings, (6) operatiomalizatio ndings, I":lq:-u:nmrnunican'ﬂn,\\\ /////// //
InfOQ dimensions mpact assessment. These eight S — \><,/// /// ///
O Data resolution the _'F"ﬂ';f“‘f'f-*?ﬂd“f“;f 'ﬁdm'ﬂna Data - N Operationalization
Brie Sl e overing these phases, beyond the datd .. - NS o
g Data int ti [ statistical analysis and enhances the lew Collection X7 of Findings
ata Integration on quality. The envisaged overall approa ST et T T T e //x\\
O Temporal relevance fnd practice of applied statistics needs to im a trilogy combining 7 NQ
O Chronology of data and goal cyde view, (2) an amalysis of impact, and | il . j
O Generalizability f the generated information and knowledge. We Data N Formulation
O Operationalization Ing the problem, continue with a review of the i Analysis §f of Findings
O Communication foncept presented in Kenett and Shrouel (2014), 2

N view

il Of the eight life cycle phases listed above. Adoptinga h
of statistics has obviows implications to research, education, and sta®
practice. These are presented in the context of several examples. We conchud

with a discussion of such implications.



Applied statistics

is about meeting the challenge of
solving real world problems

with mathematical tools
and statistical thinking
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“Statistics is important because it is conceived as

A journey back

contributing to a causal understanding ...

into the past

Statistics can indicate causality even in the

absence of a mechanistic understanding. 2006

But the traditional self-conception of statistics is 1977
1953
1936
1931
1923
1921
1904
1886
1738

that it can rarely say anything about causality.
This is a paradox.”

Statistikk 50 Ar! Some remarks on causality*

Odd O. Aalen

*From a presentation celebrating 50 years to the establishment of a Masters Degree in Statistics in Norway, May 22, 2006



Fhisnt e e Data analysis and regression : a second course

DATA ANALYSIS - ot S
ND REGRESSION in statistics, Addison-Wesley, 1977

Frederick Mosteller John Wilder Tukey
1916-2006 1915-2000
Causation: “causation, though often our major concern, is |
1. Consistency . )
2. Responsiveness usua!ly_not settled by statlstlca! arguments

3. A mechanism



Albert Einstein (1879-1955)

“Development of Western science is based on two
great achievements: the invention of the formal
logical system (in Euclidean geometry) by the
Greek philosophers, and the discovery of the
possibility to find out causal relationships by
systematic experiment (during the Renaissance).”

A. Einstein, April 23, 1953



'J €an P I d g et ( 1 8 9 6 - 1 9 8 O ) ' e

Piaget's (1936) theory of cognitive development _
explains how a child constructs a mental model of |
the world. His contributions include a stage theory
of child cognitive development, detailed
observational studies of cognition in children, and a
series of tests to reveal different cognitive abilities.

CHOLOGY

fehild

i : |
l Jean Piaget

& Birbel Inhelder

“The infant’s hand hits a hanging toy. The infant sees it bob about, then repeats
the gesture several times, later applying it to other objects as well, developing a
striking schema for striking.”

The notion of causality in the infant’s model entails a primitive cause-effect
relationship between actions and results. For example if Z = ‘pull string hanging
from bassinet hood’ Y = ‘toy shakes’, the infant’s model contains the causal
relationshipZ — Y .



W. Edwards Deming (1900-1993)

“Tests of variables that affect a process are useful only if they predict
what will happen if this or that variable is increased or decreased.

Statistical theory, as taught in the books, is valid and leads to
operationally verifiable tests and criteria for an enumerative study.
Not so with an analytic problem, as the conditions of the experiment
will not be duplicated in the next trial.

Unfortunately, most problems in industry are analytic.”*

*From preface to The Economic Control of Quality of nufactured product
by W. Shewhart, 1931

10



Jerzy Neyman (1894-1981)

1880, Vol. 5, No. 4, 485-480

On the Application of Probability Theory to
Agricultural Experiments. Essay on
Principles. Section 9.

Jerzy Splawa-Neyman

Translated and edited by D. M. Dabrowska and T. P. Speed from the Polish original, which
appeared in Roczniki Nauk Rolniczych Tom X (1923) 1-51 (Annals of Agricultural Sciences)

Abstract. In the portion of the paper translated here, Neyman introduces a
model for the analysis of field experiments conducted for the purpose of
comparing a number of crop varieties, which makes use of a double-indexed
array of unknown potential yields, one index corresponding to varieties and
the other to plots. The yield corresponding to only one variety will be
observed on any given plot, but through an urn model embodying sampling
without replacement from this doubly indexed array, Neyman obtains a

formula for the variance of the difference between the averages of the OUtcomes
observed vields of two varieties. This variance involves the variance over
all plots of the potential yields and the correlation coefficient r between the
potential yields of the two varieties on the same plot. Since it is impossible
to estimate r directly, Neyman advises taking r = 1, observing that in
practice this may lead to using too large an estimated standard deviation,
when comparing two variety means.

Potential

11



Measurement Model (Outer Model)

Endogenous Factors

i1 11
Tz %12
T13 13
Ti4 f14

Customer
Complaints

Customer

Satisfaction
(ACSD

UGI"A Age Ethnicity e
-77 ; Exogenons Factors i
Undergraduate
Grade Point | Y9 41 22 Step 1
USMLE ;
Average |
General ‘85 g
( UG PA) UGPA Achievement 03 Step 2 g
3 . ;
¥ USMLE
Performance
UG4PA 47 in Medicine \81 Step 3 :
USMLE
Perceiyed
Aptltude Quality
for Medicine
D1
“Perceived
Value
.88\ .83\ /.68 WS
I;éustomer
. ixpectations
The Medical College
i i ® cs 7;1.(){ (4
Admission Test ™ = T l ISMI E® ACST model

(MCAT®),

Figure 2.

» UNITED STATES MEDICAL LICENSING EXAMINATION ®

Latent variable path analysis model of UGPA, MCAT, and USMLE (Steps 1-3) latent variables employing ML estimation (n =

24,872). Note. Fit indexes: x3(55) = 11726.28, p < .001 (CFI = .928, RMSEA = .025). UGPA -4 = Undergraduate GPA Year 1-4; BS =
Biological Sciences MCAT Subtest; PS = Physical Sciences MCAT Subtest; VR = Verbal Reasoning MCAT Subiest; WS = Writing Sample
MCAT Subtest; Step 1-3 USMLE = United States Medical Licensing Exam Step 1-3.

Structural Equation Models

(SEM)

12



Contingency tables

DEPARTMENT OF APPLIED = MATHEMATICS,
UNIVERSITY COLLEGE, UNIVERSITY OF LONDON

DRAPERS" COMPANY RESEARCH
MEMOIRS.

BIOMETRIC SERIES, L

MATHEMATICAL CONTRIBUTIONS TO THE
THEORY OF EVOLUTION.

XIIl. ON THE THEORY OF CONTINGENCY AND ITS RELATION
TO ASSOCIATION AND NORMAL CORRELATION.

ny

KARL PEARSON, F.R.S.

> (x-%)(y-y)
T Renrew e

The term contingency table was first used by Karl Pearson in "On the Theory of Contingency and Its
Relation to Association and Normal Correlation"”, the Drapers' Company Research Memoirs Biometric

Series I, published in 1904.

13



Contingency tables

Brit. J. Phil. Sci. 34 (1983), 105-118 Printed in Great Britain

(2.) On the Conception of Contingency.

The Fisher/Pearson Chi-Squared

In mathematical treatises on algebra a definition is usually given of Controversy: A Turning Point for
probability. If p be the probability of any event, and g the probabil} 1 ductive Inferen ce*
event, then the two events are said to be independent, if the prob

combined event be p X ¢. Now let A be any attribute or character| » DAVIS BAIRD

classified into the groups A,, A,,... A, and let the total number | 1 The Chi-Squared Test
examined be N, and let the numbers which fall into these groups be : ;:iiﬁ?iij:;?ﬂds 1915 Paper
respectively. Then the probability of an individual falling into one or | 4 Pearson’s Reply
groups is given by /N, u,/N, ... n/N respectively. Now supp 5 féi?;::;";f .
population to be classified by any other attribute into the groups By, N o G,oimess of Fit and Information
the group frequencies of the N individuals to be m,, m,, . .. m, resp{ 8 Conclusion
prﬂha.blht.y of an individual falling into these groups will be respectively -
ms/N, .. . my/N. Accordingly the number of combinations of B, with A.; to be
expected on the theory of independent probahility if N pairs of attributes are
examined 1s

N X s X Eﬂ_’ %—%—-Pw, say.

NN‘ N

14



Contingency tables

i

Now it must be ci{lite clear that if we make our measurement of contingency any
— vy, 1t8 magnitude will be absolutely

its value will be unchanged if we
This is the fundamental

function whatever of such quantities as ..
independent of the order of classification, 7.2,
re-arrange the A’s and the B's in any maunner whatever..
oain of this new coneeption of contingency. But precl'se]?r as We can measure
position or acceleration in a great variety of ways, so it 1s posmb-le to measure
contingency. We must try to select out of these ways those Wthhi (r.:n) bring
contingency into line with the customary notions of correlation and association ; and
(b) permit of not too laborious calculations leading to the required measure.

" - P

15



Contingency tables

In the chapter Contingency and correlation - the insufficiency of causation,
(The Grammar of Science, 1911), Pearson says: "Beyond such discarded

. fundamentals as 'matter' and ‘force’ lies still another fetish amidst the inscrutable
Grammar of Science arcana of modern science, namely, the category of cause and effect."

=
P3CITE

The

J& CONTINGENCY AND CORRF.T.AT]OIG 159

" &’ B, occurs #,, B, occurs #, times, and su on. We thus

| KARL PEARSON, M.A, F.RS. arc able to obtain a general distribution of B's for each

s e 100 class of A that we can form, and were we to go through

\ the whale population, N, of A’s in this manner we should
ubtain a table of the following kind (—

IR
SECOND EDITION, REVISED AND ENLARGED. 3
TYPE Oy A orsprezn
’ WITH 33 FIGURES IN THE TEXT
R T S DR (] B Fotal.
2 l .
= B A W | a3
i o *a 21 . ?
v B, y e ET
La critigue de | [ ‘ 1, TN ey fizx My
Cousin C
= |
l ty 3 |
{ I3 My | .’,
[ 4 { | - |
7 9 /0
S —_—
/ Tueal o ' 2. I ) N
LONDON | !
ADAM AND CHARLES BLACK

1900

https://pure.mpqg.de/.../item 2.../.component/file 2368441/content
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Regression towards the mean.... auvalence

SON'S HEIGHT (INCHES)

L Ayl T T T T —
58 + —r—T— r

s ORI TR I Tgg i gt 1 R it g “hUagRT Sgs Regl’eSSion
Sir Francis Galton (1822-1911)

FATHER'S HEIGHT (INCHES)

Line

“It is easy to see that consequence of the co-relation must be the variation of the two organs being partly due
to common causes” Galton, F. (1886). "Regression towards mediocrity in hereditary stature".

The Journal of the Anthropological Institute of Great Britain and Ireland 15: 246263

17
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Regression towards the mean....

Base rate neglect,
Overconfidence,
Anchoring,
Representativeness,
Availability,
Regression towards
the mean,

Spurious correlation,
Framing.

The International

MICHAEL Bestseller
LEWIS

. Thinking,

THE
UNDOING Fast and Slow
PROJECT N

Daniel Kahneman
of the Nobel Prize @

Winner e

Treatment to reduce high levels of a measurement

People with extreme values of the measurement, such as high blood
pressure, may be treated to bring their values closer to the mean. If they
are measured again we will observe that the mean of the extreme group is
now closer to the mean of the whole population, that is, it is reduced. This
should not be interpreted as showing the effect of the treatment.

Relating change to initial value

We may study the relation between the initial value of a measurement and
the change in that quantity over time. In antihypertensive drug trials, for
example, it may be postulated that the drug's effectiveness would be
different (usually greater) for patients with more severe hypertension. This
is a reasonable question, but, the regression towards the mean will be
greater for the patients with the highest initial blood pressures, so that we
would expect to observe the postulated effect even in untreated patients.
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Regression towards the mean....

Base rate neglect, Comparison of two methods of measurement
Overconfidence, , ,
Anchoring, When comparing two methods of measuring the
Representativeness, same quantity researchers are sometimes tempted
Availability, .
Regression towards to regress F)ne mgthod on the other. The fallacious
the mean, argument is that if the methods agree the slope
?f;r::%‘as correlation, should be 1. Because of the effect of regression

towards the mean we expect the slope to be less
than 1, even if the two methods agree closely.

https://www.ncbi.nlm.nih.gov/pubmed/16921578

Stephen Senn (2006), Change from baseline and analysis of covariance revisited, Stat Med.; 25(24):4334-44
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Representativeness....

Base rate neglect,
Overconfidence,
Anchoring,
Representativeness,
Availability,
Regression towards
the mean,

Spurious correlation,
Framing.

The “*Hot Hand"’:
Statistical Reality or
Cognitive Illusion?

Amos Tversky and Thomas Gilovich

The hot hand fallacy H

The Hot Hand in Basketball: On the Misperception
of Random Sequences

THOMAS GILOVICH
Cornell University

AND

ROBERT VALLONE AND AMOS TVERSKY

Stanford University

We investigate the origin and the validity of common beliefs regarding “‘the hot
hand™ and “‘streak shooting’ in the game of basketball. Basketball players and
fans alike tend to believe that a player’s chance of hitting a shot are greater
following a hit than following a miss on the previous shot. However, detailed
analyses of the shooting records of the Philadelphia 76ers provided no evidence
for a positive correlation between the outcomes of successive shots. The same
conclusions emerged from free-throw records of the Boston Celtics, and from a
controlled shooting experiment with the men and women of Cornell's varsity
teams. The outcomes of previous shots influenced Cornell players’ predictions
but not their performance. The belief in the hot hand and the *‘detection™ of
streaks in random sequences is attributed to a general misconception of chance
according to which even short random sequences are thought to be highly rep-
resentative of their generating process. © 1985 Academic Press. nc.

* 91% of the fans believe that a player
has a better chance of making a shot
after having just made his last two or
three shots than he does after having
just missed his last two or three shots

* 84% of the fans believe that it is
important to pass the ball to
someone who has just made several
(two, three, or four) shots in a row

20
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Framing....

Base rate neglect,
Overconfidence,
Anchoring,
Representativeness,
Availability,
Regression towards
the mean,

Spurious correlation,
Framing.

‘A ldetime’s worth of wisdom®
S ) Levity, co-aetbeor of Frawhomornics

The International

MICHAEL Bestseller
LEWIS

| THE Thinking,
UNDOING  Fastand Slow
PROJECT e
Y Sl G R Daniel Kahneman o

Wininer of the Nobel Prize

Muller-Lyer optical illusion
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"Thus we remember to have seen that species of object we

D a Vl d H u m e ( 1 7 1 1 — 1 7 7 6) call flame, and to have felt that species of sensation we
call heat. We likewise call to mind their constant
conjunction in all past instances. Without any farther

ceremony, we call the one cause and the other effect, and

infer the existence of the one from that of the other."

1. Analytical vs. empirical claims,
the former are product of i BT
A y ‘ ]" PaRT have fubftitated any other idea in its roo;n_

E 111, "T1s therefore by EXPERIENCE only 5
:

thoughts, the latter matter of FTREATISE b

(NG

Of know- that we can infer the exiftence of one op.!

Jedge and N v
probabe Je& from that of another. “The nature of’

|
Ik
R dity. experiencs is this, We remember to have:

f(JCt Tlyman Nature : CONE
S 7 h, ‘\N had frequent inftances of the exiftence OFJ 5

ELNG e
l one fpecies of objects ; and alfo remember,

. . ° 3 ntrednpe the o= ! |
2. Causal claims are empirical . e b i f sl s o
4 L in't objects have always attended them, and’
: R have exifted in a regular order of eon-

< e - P MOR AL SUBJECYS i ' tiguity aud fucceffion with regard fo them. |
3. All empirical claims originate - B oo Tomaer- T s T T
R coeias o S5 et el AN i’ fpecies of objet we call Same, and to!

fro m expe rl e n Ce . e o] i 1‘ have felt that fpecies of fenfation we call %

|
|
|
TORT i l l l‘ beat, \T/’L; lil.{ewife call to mind thcir_ggg_—:"ii
— {' { w| L 1'hlrltcov1]l111<f‘tiq_xllrl all paft inftances, \’Vith-“s‘}
S e b out any farther ceremony, we call the one .
o i caufe and the other gfe?, and infer the ex-
_ f iftence of the one from that of ‘he other.
| i all thofc inftances, from WHICH we learn
i the conjun&ion of particular caufes and cf;
& felts, both the caufes and effes have been .f
perceiv'd by the fenfes, and are remember'd :
: But in all cafes, wherein we reafon concern-
ing them, there is only one perceiv'd or
i I rementber’d, and the other js ﬁxpp]y’d i
i conformity to our paft experience,
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A journey back

into the past

https://en.wikipedia.org/wiki/Newton%27s cradle 2020

S el
CAUSALINFERENCE A\ [ am
IN STATISTICS o 1936
A Primer 1931
Judea Pearl 1923
Madelyn Glymour 1921
Nicholas P. Jewell 1904
() - WILEY 1886

1738
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Background on causality in science and statistics

Fishbone cause and effect diagrams

Bayesian networks

Randomization in experimental designs

Propensity scores in observational studies

Counterfactuals and do calculus

Personalized medicine, condition based maintenance and Industry 4.0
Future research areas
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Wiley StatsRef:
Statistics Reference Online

Cause-and-Effect Diagrams

By Ron S. Kenett™?

Keywords: scatter plots, Ishikawa diagrams, structural equation models, Bayesian networks, integrated
management models

26



Cause-Effect Diagram

* Objectives: Visual presentation of relationships between
Effect and possible Causes

* How?: List of possible Causes and their Structure (Fishbone)

* Individual and Teamwork tool for improvement program
Initiation

* Possibility to select critical Causes based on Expert
Knowledge



Cause-Effect (Ishikawa) Diagram

(Fishbone Diagram)

Causes Effect

\
Method Manpower Kaoru Ishikawa
1915 - 1989
%1 Quaitty
Material vMachll’wa
/

28



Cause-Effect Diagram Methodology

Brainstorm

Cause-Effect




Round robin process

Rules 4

. You can say “pass”
. 'You can build on

other’s ideas

. No critique allowed

(even self)

. Indicate where to

note the idea on
the fishbone
diagram

30



Why?

Wrong Part Number

Catalog Error

Wrong Catalog

Lack of Training
Catalog Format

Keying Error Form Format

Fatigue A\

\ Software Edit
Reading Error Error
In

Shipment




Why? Why? Why?

Wrong Part Number

Format Training

Reading \ \
Error

Catalog Error

Fatigue

Format Training

Keying \ \
Of Form \ \

Wrong Catalog

Fatigue Software Edit

Error
In
Shipment




Lost control of a car

Flat Tire Slippery Road

Ice
Nail
Snow

Blow-Out
Lost
Control
Broken Tie Rod Poor of Car
Training {Chemically
Stuck Impaired
Worn Pads Accelerator
Brake Failure Poor Reflexes

Fluid Loss Reckless Sleepy

Mechanical Failure Driver Error




O participants, 2 votes each to prioritize impact, cost and feasability

Lost control of a car —improvement priorities

Effect

O,

Z

S

%

o

3.
>

——— =.

>
e — GO
Causes

Causes

Flat Tire
Nail c
Rock

Blow-out

Glass

Driver error
Reckless
Poor training
Poor reflexes

Slippery Road
Oil

Rain

Ice

Snow @

Mechanical
Failure

Brake failure
Broken tie rod

Stuck
accelerator @

To minimize the effect we will
focus on the causes in green list
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Fishbone Diagram

Eguipmant Policies

MEAN IMFRO CONFERERCE - ATLANTA, 19791

WALITY MANAGEMENT ALSO APPLIES
TO A SCHOOL OF MANAGEMENT

Open door
S h d |' Thomas E. Kelly
cheauliin Deamn and Professor
Plant calendars g
| 3 problems at Ron Keneu
o written policies | Professor
the dean's
. Elirabeth Newion
office Seca iy
_ (iary M. Roodman
Scheduling A ssociate Tean and Professor
No agenda ;" collisions
Suprise from Angela Wouk
Intﬂrupm:urts SUPArons —
Mo ‘El"l'ljll'lg tlrn-El chool of Management
spacified Mo control of Stake University of New York al Ringhamton
ending time Hinghamton, NY 135026000
Rescheduling Human error ABSTRACT
kescribes a quality improvement project underiaken by the Deans’ Office
Mo procadure f|:|r,."I 3.20.01 d of Management ot SUNY -Ringhamion. The focus of the project was the
coordmation of the Dean's daily sppomtments. A&s the School bas grown over the last
rs amd demand for the Dean's time has inoeesed, scheduling his
ix bas hecome & mor and mom complex sk The goal of this project was
5 o put mom peedicizbility into the Dean's schedule and insure that his
s achmlly unfold as planmed. The progect has broughl improvemenis bo
Procedures Paopla Wi and has sparked TOM activities in other parts of e Schoal.
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Contreol Chart for proportion of "appointment problems”

1.2

Ask About Urgency

0.8 o
Force Field Diagram °*
0.4

Flow Chart

e “1 T
50% - Iudpmen ez ¢ & & o Scheduling oo fwarrron
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_ | Mach Time meetings at -
s

Bimae st the dean's [wme = o
office o
VATEOR

25% ‘ . # & !. Y .

XEEP RECORD
R
Mectings ca
Rescheduling Emergeacy ting
Too Tight

Figure 3 36



Control Chart tor proportlon of "appolniment problems™
3/6/91, updated on3/27/91

i i 1.2
¢ changes in forces
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Judea Pearl (1985) "

April 1985

Bayesian networks are directed acyclic graphs in which the nodes represent propo-
B ENORY POR EVIDENTIAL REASONING' | sitions (m?r variables), the arcs signify the cxistence of direct causal dependencies between
the linked propositions, and the strengths of these dependencies are quantified by condi-
tional probabilities. A network of this sort can be used to represent the deep causal

knowledge of an agent or a domain expert and turns into a computational architecture if

mpu;mw. the links are used not merely for storing factual knowledge but also for directing and ac-
Lon Angeies, CA 9004 tivating the data flow in the computations which manipulate this knowledge.
e e

The first part of the paper defines the properties of Bayes networks which are
necessary to guarantee completeness and consistency, and shows how dependencies and
conditional-independence relationships can be tested using simple link-tracing operations.

Topics: Memory Models
. Belief Systems

Inference Mechanisms : -
Know Representati PROBABILISTIC REASONING . . .
ledge o IN INTELLIGENT SYSTEMS: F:1afke) @isl paper qcals 'l!"lt.]':-l the ‘tﬂ.ﬁk of fIJS'lﬂg and Erupagangg the
Networks of Plausible Inference =4 . . - . . . S ‘. :‘
¢ Applicability of probabilistic methods to tasks requiring
Submitted to the
Seventh Annual Conference of

it automated reasoning under uncertainty.... Application areas
0 include diagnosis, forecasting, image understanding, multi-
sensor fusion, decision support systems, plan recognition,

¢ Planning and control, speech recognition — in short, almost
tt any task requiring that conclusions be drawn from uncertain
¥ clues and incomplete information.

the Cognitive Science Sodety
15-17 August 1985

P. Spirtes, C. Glymour and R. Scheines,
"Causality from Probability" Proceedings of le develop causal models.

the Conference on Advanced Computing for https://www.sciencedirect.com/science/article/
the Social Sciences, Williamsburg, Va. 1990. pii/B9780080514895500059
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P(Xl XZ X3 X4_ Xs) =7

(%) (%) (X5) (%) (X5) Independence
P(X, -+ X5) = P(X)P(% )P(% )P (X, )P(%)

@f\@;/@ Markov Model

P(X---X5) = POGIP(G | X1))P(XKs | X2)P (X4 | X3)P(Xs | X4)

(%) (%) (%) 05) Bayesian Network

POX, - X5 ) =P(X)PCOG | X)POK | X)POX, PO 1 X5)
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E B P(A[ER)

Earthquake Burglary

Five events, over time

7 e b 0.9
e b 0.2
2 o
e p 0.01 /
time | Earthquake Burglary |Radio |Alarm | Call
1 0 0 0 0 0 @
2 0 0 0 0 0
3 0 0 0 0 1
4 0 0 0 o) o)
5 0 1 0 0 0
6 1 0 1 1 1
7 0 0 0 0 0)




A Bayesian Network

Radio (R)

WARNING

(@V),

ALARM SYSTEM

Alarm (A)

P(C,A,R,E,B) = P(B)*P(E|B)*P(R|E,B)*P(A|B,E,R)*P(C|A,R,B,E)

P(C,A,R,E,B) 9 P(BY*P(E)*P(RIE)*P(A|B,E)*P(C|A)
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What is the effect of earthquake and radio on alarm?

causes

\Prediction

P(Alarm| Earthquake, Radio) = P(Alarm| Earthquake)

46



effect

What Is causing the call?
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The Law of Total Probability

Law of Total Probability
P(A) =23 P(A, B)
=2, P(A | B) P(B) where B is any random variable

Why is this useful? given a joint distribution (e.g., P(A,B,C,D)) we can obtain any “marginal” probability
e.g.,

P(B) = ZA ZC ZD P(A, B, C, D)
Less obvious: we can also compute any conditional probability of interest given a joint distribution,
e.g.,

Plc|b) =2, 2,P(a,c,d | b)
=1/P(b) X, %,P(a, c,d,b)
where 1 / P(b) is just a normalization constant

Thus, the joint distribution contains the information we need to compute any
probability of interest.



The Chain Rule

We can always write
P(a,b,c,..z) =P(a]|b,c,...z)P(b,c,..2)
(by definition of joint probability)

Repeatedly applying this idea, we can write
P(a,b,c,..z) =P(a]|b,c,...z)P(b]c,.. z)P(c|..2z)..P(2)

This factorization holds for any ordering of the variables.

This is the chain rule for probabilities.



Conditional Independence

2 random variables A and B are conditionally independent given C iff

P(a,b|c)=P(a|c)P(b|c) forallvaluesa,b,c

More intuitive (equivalent) conditional formulation
A and B are conditionally independent given C iff
Pla| b,c)=P(a]c) OR P(b]|ac)=P(b]|c) forallvaluesa,b,c
Intuitive interpretation:

P(a | b, c) =P(a | c) tells us that learning about b, given that we already know c, provides no
change in our probability for a,

i.e., b contains no information about a beyond what c provides

Can generalize to more than 2 random variables
E.g., K different symptom variables X4, X,,...,X\ , and C = disease
P(X1, X5, X | C) =11 P(X: | €)
Also known as the naive Bayes assumption



Bayesian Networks G
rm

* A Bayesian network specifies a joint distribution in a structured fo

* Represent dependence/independence via a directed graph

* Nodes = random variables
e Edges = direct dependence

e Structure of the graph <~ Conditional independence relations

In general,

P(Xy, X5,....Xy) = ITP(X; | parents(X;) )

The full joint distribution The graph-structured approximation

* Requires that graph is acyclic (no directed cycles)

e 2 components to a Bayesian Network
* The graph structure (conditional independence assumptions)

* The numerical probabilities (for each variable given its parent)



A 3-way Bayesian Network

Marginal Independence:
@ @ P(A,B,C) = P(A) P(B) P(C)



A 3-way Bayesian Network

Do

Markov dependence:
P(A,B,C) = P(C|B) P(B|A)P(A)

53



A 3-way Bayesian Network

N

Conditionally independent effects:
P(A,B,C) = P(B|A)P(C|A)P(A)

B and C are conditionally independent given A.



A 3-way Bayesian Network

Battery

Independent Causes: N /

(5,0 - PCIABIP(A(E
NSO

N
(&

A car's engine can fail to start (C) due either to a dead battery (A) or due to a blocked fuel pump (B). Ordinarily, we assume
that battery death and fuel pump blockage are independent events, because of the essential modularity of such
automotive systems. Thus, in the absence of other information, knowing whether or not the battery is dead gives us no
information about whether or not the fuel pump is blocked. However, if we happen to know that the car fails to start (i.e.,
we fix common effect (C), this information induces a dependency between the two causes battery death and fuel blockage.
Thus, knowing that the car fails to start, if an inspection shows the battery to be in good health, we can conclude that the
fuel pump must be blocked.
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Burglary example revisited

g -
g | | SENEEEE; 2.
H cmm=

Consider the following 5 binary variables:
B = a burglary occurs at your house
E = an earthquake occurs at your house
A = the alarm goes off
J =John calls to report the alarm
M = Mary calls to report the alarm

WhatisP(B | J, M) ?
* We can use the full joint distribution to answer this question
This requires 2> = 32 probabilities
* Alternatively, we can use prior domain knowledge to come up with a Bayesian
Network with fewer probabilities
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Constructing a Bayesian Network

Order the variables in terms of causality
e.g., {E, B} > {A} -> {J, M}
P(J, M, A, E,B)= P(J, M| A, E, B) P(A]| E, B) P(E, B)
~ P(J, M | A) P(A| E, B) P(E) P(B)
~ P(J | A)P(M | A) P(A| E, B) P(E) P(B)
These causality assumptions are reflected in the graph structure of the Bayesian Network

Unconstrained joint distribution requires O(2") probabilities. If we have a Bayesian
network, with a maximum of k parents for any node, then we need O(n 2k) probabilities.
Example: Full unconstrained joint distribution with n =30 needs 10° probabilities for full

joint distribution but binary Bayesian network with n =30, k = 4, requires only 480
probabilities.



The Burglary Bayesian Network Structure
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Constructing the Bayesian Network

P(J, M, A E, B) =
P(J| A) P(M | A) P(A|E,B) P(E) P(B)

There are 3 conditional probability tables (CPDs) to be determined:
P(J | A), P(M | A), P(A | E, B)

Requiring 2 + 2 + 4 = 8 probabilities
And 2 marginal probabilities P(E), P(B) -> 2 more probabilities
These probabilities come from

* Expert knowledge

* From data (relative frequency estimates)
* Or a combination of both



10 probabilities
Versus
2°-1=32-1=31

The Bayesian Network

P(E)
.002

L.'? | (B
| Burglary 0(01)

P(4)

WARNING

Tl (»)

2. 9 ALARM SYSTEM

.001

4 | _Pun
t 70
7 01

~

JohnCalls
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The Bayesian Network for a different variable ordering

MaryCalls

(a)
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The Bayesian Network for a different variable ordering

MaryCalls
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Inference (Reasoning) in Bayesian Networks

Consider answering a query in a Bayesian Network
Q = set of query variables

e = evidence (set of instantiated variable-value pairs)
_ . - c L . Earthquake
Inference = computation of conditional distribution P(Q]e)

Burglary

WARNING

Q)

ALARM SYSTEM

Examples
P(Burglary | Alarm)
P(Earthquake | JCalls, MCalls)
P(JCalls, MCalls | Burglary, Earthquake)

P(B|A)=P(A|B)P(A)/P(B)

We can use the structure of the Bayesian Network to answer such queries efficiently
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Example

P(A, B, C, D, E, F, G) is modeled as P(A|B)P(C|B)P(F|E)P(G|E)P(B|D)P(E|D)P(D)



Example

Say we want to compute P(A | c, g)

65



Example

Direct calculation: P(Alc,g) = 2.per P(AB,D,EF | ¢,9)

Complexity of the sum is O(m?)
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Example

Reordering:
25 P(AIB) 2 P(BID,c) Zg P(DIE) Z P(E,F |g)
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Example

Reordering:
2.5 P(AB) 2 P(B|D,c) 2 P(D|

&

P(Elg)
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Example

Reordering:
21, p(alb) 24 p(bld,c)

e P(dle) p(elg)

p(djg)
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Example

Reordering:
25 P(A|

%) 25 P(B|D,c) P(D|g)

P(Blc.9)
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Example

Reordering;
b P(A[B) P(B|c,9)

P(Alc,9)

Complexity is O(m), compared to O(m?)
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Real-valued Variables

Bayesian Networks can also handle Real-valued variables

* If we can assume variables are Gaussian, then the inference and theory for Bayesian
networks is well-developed,
* E.g., conditionals of a joint Gaussian is still Gaussian, etc.
* Ininference we replace sums with integrals

* For other density functions it depends...

* Can often include a univariate variable at the “edge” of a graph, e.g., a Poisson conditioned on
day of week

e But for many variables there is little know beyond their univariate properties, e.g.,
what would be the joint distribution of a Poisson and a Gaussian? (its not defined)

e Common approaches in practice
* Put real-valued variables at “leaf nodes” (so nothing is conditioned on them)
* Assume real-valued variables are Gaussian or discrete
* Discretize real-valued variables



Take home bullets —

» Bayesian networks represent a joint distribution using a graph
» The graph encodes a set of conditional independence assumptions

» Answering queries (or inference or reasoning) in a Bayesian network
amounts to efficient computation of appropriate conditional
probabilities

» Probabilistic inference is intractable in the general case but can be
carried out in linear time for Bayesian networks
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| Bayesian
Networks

https://cran.r-project.org/web/packages/bnlearn

Learning Bayesian Networks with the bnlearn
R Package

Marco Scutari
University of Padova

http://www.lighttwist.net/wp/uninet
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http://www.lighttwist.net/wp/uninet
https://cran.r-project.org/web/packages/bnlearn

B Microsoft

B Research
GRS G ;
MSBNy
[S.’}HCSI.’)H thworL | :_;'Iit()r and | ool Kit'

https://www.microsoft.com/en-
us/download/confirmation.aspx?id=52299

MSBNXx is a component-based
Windows application for creating,
assessing, and evaluating Bayesian
Networks, created at Microsoft
Research

https://msbnx.azurewebsites.net/msbnx/what is msbnx.htm

“g’l University of Pittsburgh

GeMle 2.1

BAYES

Data Analytics, Modeling, Decision Support

Al

Decision Systems Laboratory.
Department of Information
Science and Telecommunications
and the Intelligent Systems
Program at the University of
Pittsburgh.

www.bayesfusion.com
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Causal probabilistic
network modeling—An
illustration of its role in
the management of
chronic diseases

This paper describes the role of the novel
tochnI?uo of causal probabilistic network (CPN)

as an approach to tackling control
system problm by that of the

suffering from a chronic disease such as
diabetes. Three roles of a CPN are discussed.
First, since diabetes arises as a consequence 0
ired control of carbohydrate metabolism, tho
ability of a CPN to represent the uncertainty of a
ph ically-based model is described.
Second, its ability to make robust estimates of
the parameters of the metabolic model is
presented, and finally, in conjunction wlth
decision theory f proaches, its abil
compare alternative therapies and a Iu on
insulin mor?y for patients with insulin-
dependent abocn mellitus is illustrated.

¢ management of chronic noncommunica-

ble diseases such as diabetes (diabetes mel-
litus), raised blood pressure (hypertension), and
clevated levels of cholesterol poses some difficult
challenges for the clinician. In most cases, from
an engineering or systems perspective, such dis-
eases can be viewed as arising from a partial or
complete failure of onc or more of the multitude
of feedback control loops of the human organism.
The management of such diseases requires regu-

1IBM SYSTEMS JOURNAL VOL 31 NO 4 1082

”
N\ —

— - diabetesxdsl

The basic building block of the system is a one hour model of
the intake and utilization of food, blood glucose and insulin.
The nodes BG and CHO acts as status variables denoting
respectively the glucose in the blood stream and the glucose
reservoir in the stomach. Intermediate nodes are primarily
describing processes that utilizes the glucose
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A preliminary model for insulin dose adjustment.

@iInProceedings{andreassen:hovorka:benn:etal:91,

author = "Steen Andreassen and Roman Hovorka and Jonathan Benn and Kristian G. Olesen and Ewart |
title = "A Model-based Approach to Insulin Adjustment”,

booktitle = "Proceedings of the Third Conference on Artificial Intelligence in Medicine”,

year = 1991,

editor = "M. Stefanelli and A. Hagsman and M. Fieschi and J. Talmon™,

pages = "239--248",

publisher = "Springer-verlag"
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Modern Analysis of
Customer Surveys:

with Applications
using R —

- "RON S. KENETT
SILVIA SALINI

! STATISTICS IN PRACTICE

New
FRONTIER

Bayesian networks
give insight into
survey-data analysis

by Ron Kenett and Silvia Salini

0 smalyzing an annual
customer satsfaction
surwey and 2 public

oprson survay about
whities n Europa.
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But: Correlation is not causation...

2. THE BALLOON IDEA T TTT T T I T T T T T T T T I I T e .

18 /Ll :

The basic idea consists of surrounding the sample plot 7 '

with a kind of “birthday balloon™ that is in fact an 38 / ? ’

ellipse. But let us apply this method to an example u i

taken from a well-known volume by Hoel (1971). The 12 :

sample plot from page 189 of Hoel’s book is reproduced ' / f’ ? &-—: |

in Figure 1. 0P / -h :

First, we draw the balloon so as to surround all or Y R 4 ' ° | H

most of the points and to fit the plot. Second, we mea- ' y ® y |

sure the vertical height of the balloon at its center, h, 26 ’ 4 I

and its vertical height at the extremes, H. Then we 24 lé Il

compute the formula _ " ¢ A :

: |

F=y1-(g). ) ¢ '

e L 18 & |

If the points inside the balloon are “well distributed,” N\ # !

then the result of the computation usually gives a fairly 1§ 17171 -
good idea of the value of Pearson’s correlation coeffi- 20 22 24 26 28 30 37 34 36 38 40

cient.

X
Chatillon, G. (1984) The Balloon Rules for a Rough Estimate of the
Correlation Coefficient, The American Statistician, 38(1), 58-60.
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Correlation is not causation...

Scatterplot of Y vs X

10.0
Correlations
Pearson correlation -0.501
P-value 0.252 7.5 -
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Correlation is not causation...

Correlations

Pearson correlation -0.501

P-value

0.252

Yi

60

40

20

-20

-40

-50

-25

Scatterplot of Y vs x

Y=(5X-X2)/(1-2X-2X2)

25

50

75

100

125
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Correlation is not causation...

Scatterplot of Y vs x

Correlations 60+ *

Pearson correlation -0.501
P-value 0.252

40

Y=(5X-X2)/(1-2X-2X2)

No
. 20
correlation _
>
does not
. 0,
imply no
causation
_20,
-407 [ [ [ [ [ [
-50 -25 0 25 50 75 100 125



Correlation is not causation...

The population of Oldenburg in Germany and the
number of observed storks in 1930-1936*

year 1930 | 1931 | 1932 | 1933 | 1934 | 1935 | 1936
Population
Ne - 50 92 64 67 69 73 76
oJarITdleo | thousands
does not NU”lleFOf 130 (150 |175 |190 (240 245 |250
storks
imply re

causation

* Box, Hunter and Hunter, Statistics for Experimenters: An Introduction to
Design, Data Analysis, and Model Building, J. Wiley, 1978
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Spurious correlation

Base rate neglect,
Overconfidence,
Anchoring,
Representativeness,
Availability,
Regression towards
the mean,

Spurious correlation,
Framing.

‘A ldfetime’s worth of wisdom®
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The International
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| Daniel Kahneman o

Winner of the Nobel Prize

Time is a confounding variable

Population

80

Scatterplot of Population vs Storks
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50

Correlations

Pearson correlation  0.931
P-value 0.002

100

150

200 250
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Correlation
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imply
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Population (in thousands)

Spurious correlation

Scatterplot of Population (in thousands) vs Year

75

70-

65

55-

1930 1931 1932 1933 1934 1935 1936
Year

Population (in thousands)

Scatterplot of Population (in thousands) vs Year

75

70-

65

55-

1930

1931 1932 1933 1934 1935
Year

1936
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Storks

Spurious correlation

Fitted Line Plot Fitted Line Plot
Storks = - 43637 + 22.68 Year Population (in thousands) = - 6838 + 3.571 Year
280 s 16.0995 80 s 165616
R-Sq 91.7% R-Sq 96.3%
260 | R-Sq(adj)  90.1% R-Sq(adj) 95.6%
75
240 %
(=
1]
v
220 3 70
A=
=)
200 £
(=
65 |
180 S
8
3
160 g 60-
140
[ ] [ ]
1207 T T T T T T T 557 T T T T T T T
1930 1931 1932 1933 1934 1935 1936 1930 1931 1932 1933 1934 1935 1936
Year Year
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RESI_Storks

Scatterplot of RESI_Storks vs RESI_Pop
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20

—
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°

-10

-20-

RESI_Pop
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RESI Storks

Scatterplot of RESI_Storks vs RESI_Pop

40

30

20

10

-10 -

20

-30-

-5.0

-2.5

0.0
RESI_Pop

2.5

5.0

Correlations

Pearson correlation  0.931
P-value 0.002

Correlations

Pearson correlation  -0.163
P-value 0.727
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On spurious

http://www.tylervigen.com/spurious-correlations

correlations

Per capita consumption of mozzarella cheese
correlates with

Civil engineering doctorates awarded
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Background on causality in science and statistics

Fishbone cause and effect diagrams

Bayesian networks

Randomization in experimental designs

Propensity scores in observational studies

Counterfactuals and do calculus

Personalized medicine, condition based maintenance and Industry 4.0
Future research areas
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“No aphorism is more frequently repeated in connection with field trials, than
that we must ask Nature few questions, or, ideally, one question, at a time.
The writer is convinced that this view is wholly mistaken. Nature, he suggests,
will best respond to a logical and carefully thought out questionnaire. A
factorial design allows the effect of several factors and interactions between
them, to be determined with the same number of trials as are necessary to
determine any one of the effects by itself with the same degree of accuracy.”

R.A. Fisher (1926). The arrangement of field experiments, Journal of the Ministry of Agriculture of Great
Britain 33, 503-513.
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LE seul moyen de prévenir ces écarts, consiste a supprimer,
ou au moins a simplifier, autant qu'il est possible, le
raisonnement qui est de nous, & qui peut seul nous égarer,
a le mettre continuellement a I'épreuve de l'expérience; a
ne conserver que les faits qui sont des vérités données par
la nature, & qui ne peuvent nous tromper ; a ne chercher la
. . S verité que dans l'enchainement des expériences & des
D@Slgn Of EXperlmeﬂtS observations, sur-tout dans l'ordre dans lequel elles sont
. présentées, de la méme maniere que les mathématiciens

parviennent a la solution d’un probléme par le simple
arrangement des données, & en réduisant le raisonnement

By a des opérations si simples, a des jugemens si courts, qu’ils
R. A FiShCI‘, SL‘..D., F.R.S. ne perdent jamais de vue I'évidence qui leur sert de g'uit.ie.
Methode de Nomenclature chimigue,
Formerly Fellow of Gonville and Caius College, Cambridge A. L. LLAVOISIER, 1787,
Honorary Member, American Statistical Association -
and American Academy of Arts and Sciences I have assuﬁlﬂd] as [hE‘: EKPE‘I‘II‘I’]EHtEI’ E!.l‘Wé:'!.}’S

Galton Professor, University of London L ] .
does assume, that it zs possible to draw valid inferences

from the results of experimentation ; that it is possible
to argue fI'CIlTl CONsequences to causes, from observa-

Oliver and Boyd tions to hypotheses; as a statistician would say,

Edinburgh: Tweeddale Coyrt from a sample to the population from which the

London: 33 Paternoster Row, E.C. sample was drawn, or, as a logician might put 1t,
1937

from the particular to the general.




An implicit definition of causal effects by Fisher is the following:

If we say, ‘This boy has grown tall because he has been well fed,” we are
not merely tracing out cause and effect in an individual instance; we are
suggesting that he might quite probably have been worse fed, and that in
this case he would have been shorter. We are, in fact, suggesting that
existing differences of nutrition can account for differences of stature
comparable to the standard deviation of stature. Now this is just what is
meant when we speak of nutrition as a cause of variability; we thereby
mean that in a population absolutely uniform in regard to other causes,
such as breeding and exercise, existing differences of nutrition would
produce a certain variability—in fact, that a certain percentage of the
variance must be ascribed to nutrition.

Fisher RA (1919) The causes of human variability. The Eugenics Review;10(4): 213-220.



In the 1920s RA Fisher presented randomization as an essential ingredient
of his approach to the design and analysis of experiments, validating
significance tests. In its absence, the experimenter had to rely on his
judgement that the effects of biases could be discounted.

Twenty years later, Bradford Hill promulgated the random assignment of
treatments in clinical trials as the only means of avoiding systematic bias
between the characteristics of patients assighed to different treatments.
The two approaches were complementary, Fisher appealing to statistical
theory, Hill to practical needs. The two men remained on good terms
throughout most of their careers.

Peter Armitage (2003) Fisher, Bradford Hill, and randomization, International Journal of Epidemiology 32:925-928



Bradford Hill, A. (1953). Observation and experiment. New England Journal of Medicine 248:995-1001

Bradford Hill, A. (1965). The environment and disease: association or causation? Proceedings of the Royal
Society of Medicine 58:295-300

Strength (effect size): A small association does not mean that there is not a causal effect, though the larger the
association, the more likely that it is causal.

Consistency (reproducibility): Consistent findings observed by different persons in different places with different
samples strengthens the likelihood of an effect.

Specificity: Causation is likely if there is a very specific population at a specific site and disease with no other likely
explanation. The more specific an association between a factor and an effect is, the bigger the probability of a causal
relationship.

Temporality: The effect has to occur after the cause (and if there is an expected delay between the cause and
expected effect, then the effect must occur after that delay).

Biological gradient: Greater exposure should generally lead to greater incidence of the effect. However, in some
cases, the mere presence of the factor can trigger the effect. In other cases, an inverse proportion is observed:
greater exposure leads to lower incidence.[

Plausibility: A plausible mechanism between cause and effect is helpful (but Hill noted that knowledge of the
mechanism is limited by current knowledge).

Coherence: Coherence between epidemiological and laboratory findings increases the likelihood of an effect.
However, Hill noted that "... lack of such [laboratory] evidence cannot nullify the epidemiological effect on
associations".

Experiment: "Occasionally it is possible to appeal to experimental evidence".

Analogy: The effect of similar factors may be considered.



. . }US Surgeon General Luther Terry holds a copy of the 387
- The Environment and Disease: page report of the Advisory Committee to the Surgeon General
of the Public Health Service on the relationship of smoking to
by Sir Austin Bradford Hill cBe Dsc FRCP(hon) FRS  health Jan 11. 1964. He spoke at a Washington news
conference at which the study was released. It termed
smoking a health hazard calling for corrective action.”
(AP Photo/'hwg)

Association or Causation?

(Professor Emeritus of Medical Statistics,
University of London)

Amongst the objects of this newly-founded Section
of Occupational Medicine are firstly ‘to provide a
means, not readily afforded elsewhere, whereby
physicians and surgeons with a special knowledge
of the relationship between sickness and injury
and conditions of work may discuss their prob-
lems, not only with each other, but also with
colleagues in other fields, by holding joint meet-
ings with other Sections of the Society’; and,
secondly, ‘to make available information about

. . the physical, chemical and psychological hazards
Austin Bradfo rd Hill of occupation, and in particular about those that

( 1897-1991 are rare or not easily recognized’.

BRITISH MEDICAL JOURNAL

LONDON SATURDAY SEPTEMBER 30 1950

SMOKING AND CARCINOMA OF THE LUNG
PRELIMINARY REPORT
RICHARD DOLL, M.D., MR.CP,

i US report ties smoking to cancer

Professor of Medical Statistics. London School of Hygiene and Tropical Medicine : Honorary Director of the Statisiical
Research Unit of the Medical Research Conncit

Br Med J. 1950 Sep 30; 2(4682): 739-748.
Smoking and Carcinoma of the Lung
Richard Doll and A. Bradford Hill

Richard Doll
(1912 — 2005) 116



Cornfield Inequality

Cornfield J (1956). A statistical problem arising from retrospective studies. Proceedings 3rd
B Berkeley Symposium on Mathematical Statistics, 4:135-48.

R, is the observed relative risk between an exposed and unexposed
group, which could be explained by an unmeasured confounder, U.

R, is no greater than the ratio of the prevalence of U in the exposed to
that in the unexposed population. R, < R, where R, is the ratio of risk
in those with U compared to those without U.

Lung cancer in asbestos workers: relative risk of asbestos exposed workers dying from lung
cancer is 6.8 times their expected number in general population.

60% of all males smoke, 80% of males in asbestos-related occupations. The prevalence ratio,
0.8/0.6 = 1.33, is much less than R, = 6.8, so Cornfield’s inequality implies that smoking cannot
explain the entire association between asbestos and lung cancer. 117



Cornfield Inequality

Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL (1954) Smoking
® and lung cancer: recent evidence and a discussion of some questions. J Natl Cancer Inst 1954;22:

“The consistency of all the epidemiologic and experimental
evidence also supports the conclusion of a causal relationship with
cigarette smoking...results in animals are fully consistent with the
epidemiologic findings in man.

When a demonstrable parallelism exists between epidemiologic
data and laboratory findings, greater significance accrues to both.”
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Design of Experiments Strategy

* Industrial
. Statisti;s:
Scoping Screening Optimizing Robustness KPR
Initial Fractional Response Robust

assessment designs surfaces ‘ designs

|
Gain Knowledge Build
\ / Confidence

Replicates and pseudo-replicates (Hurlbert): ‘
https://web.ma.utexas.edu/users/mks/statmistakes/pseudorep.html
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Experiment

Make it your motto day and night
Experiment

And it will lead you to the light

The apple on the top of the tree

Is never too high to achieve

So take an example from Eve
Experiment

Be curious

Though interfering friends may frown,
Get furious

At each attempt to hold you down
If this advice you'll only employ
The future can offer you infinite joy
And merriment

Experiment

And you'll see

Mabel Mercer sings Cole Porter



Rubin: What if, in a randomized experiment, the chosen
randomized allocation exhibited substantial imbalance on a
prognostically important baseline covariate?

Cochran: Why didn't you block on that variable?

Rubin: Well, there were many baseline covariates, and the
correct blocking wasn't obvious; and [ was lazy at that time.

Cochran: This is a question that I once asked Fisher, and his
reply was unequivocal:

Fisher (recreated via Cochran): Of course, if the
experiment had not been started, [ would rerandomize.

Don Rubin, Annual meeting of Israeli Statistical Association,31/5/ 2018

When asked: How you
would handle a random
order with a
perceptible pattern?
Fisher responded that
he did not understand
the question: “l would
of course rerandomize”

D.R. Cox (personal
communication,
26/2/2019)
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On randomization and
re-randomization




24 DESIGNS FOR THE REDUCTION OF ERROR

and T, T, giving each equal probability. The full discussion of thjg Proce
randomization is deferred to Chapter 5. Sof

A typical arrangement of treatments resulting from such a randomizatjy ;
shown in Table 3.1 together with some fictitious observations. For each pair (;sf
units the difference between the observation on T, and the observation op T,is
calculated. The treatment effect is estimated by d, the mean of these differences
and the estimated standard error of d, and a test of the statistical significance of j

can be obtained by simple standard statistical calculations (Goulden, 1952,
p- 51), the amount of the uncontrolled variation being estimated

from the
observed dispersion of the differences in the last column of Table 3.1.
TABLE 3.1
PAIRED COMPARISON EXPERIMENT
Day First Unit Second Unit Difference, d
1 T;:2.8 Ton 3.2 0.4
2 Ts23.1 15251 0.0
3 Ty:34 T,:2.9 0.5
4 T,:3.0 Tt 3.5 0.5
5 T;:2.7 73334 0.3
6 T,:2.9 T,:3.0 —0.1
7 T,:3.5 T,:3.2 0.3
8 T,:2.6 Ty:2.8 0.2

A treatment is applied
as T1 or T2.

What is the treatment effect?
Is the effect at T2 greater
than the effect at T1?

Density

04|

03

0.1

0.0

Distribution Plot
T, df=7

0.006051

0 3.35897
X

f_?

Estimated standard error = 0.078 \// 123
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Following this
introduction,

Cox discusses three
approaches marked
below in red, green
and blue.

Further discussion is
marked in yellow.

86 RANDOMIZATION

the randomization when it seems particularly unsuitable. As ar
consider the paired comparison experiment, Example 3.1, w A,
of ‘units. Suppose that, as in our first account of this .
units are arranged in a definite order within each pair, i

DUt
] e\ 4

bt

decided that this ordering is not of sufficient importance 1o
balancing it in the design of the experiment by the method of
3.10.  Now it will happen, actually about once in 128 tin
run, that lh? ordering of treatments is the same for every pai
I, T, every time or 7, 7, every time. Further, once in about 14

arrangement is either of this type or has just one pair showing .

ordering from the remaining 7. J Fy Show‘ b

It is clearly undesirable to use th :

. ! ¢s¢ arrangements. Even tk
think tha.t there 1s probably not an important order effect, there
to be various things, connected say with the expcrimentzil’ tech
cou.ld_prodtfce such an effect. [In other words a pattcmo
variation fm.lh 4 substantial systematic difference between he |
secopd unit in the pair, is a priori considerably more probal e th
pagncular patterns we can think of e

imilar considerations apply i : ‘ |
. ply in other experi
tion pro.duces 4n arrangement that fits jn “],)e b
pat::;n in thc. experimental material, even
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raqdom!:ea‘(’l:r; has a line of treatment 7 say d:)w:".a
omi - vz 1 : n.
.l‘alld' ock EXperiment gives the same ;rder«*
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as unsatisfacto
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extremely small _except in experiments with a small total number of ypi
There are three ways of dealing with the diﬂ'lcult.y, all depe"di"golu
curtailing the randomization. The first method 1s to incorporate a cong.
tion about order into the formal design of the experiment, as was done
in Example 3.10, where 7, and 7, each occurred four times in the firy
position. This is probably the best solution in the present case, but it
1S certainly not a general answer to the problem, since there are
reasons why it may be impracticable or undesirable to introduce fi
constraints into the design. For example we lose degrees of freedom for
residual in eliminating a source of variation that is probably not important
we make the experiment more complicated and there may alread)
several different systems of grouping in the design, making the in roducti
of further conditions difficult or impossible.
"he second method is to reject extreme arrangements whene
OCCULE.. Ie.. 1o rerandomirze DEar avacciala: oo zs 0 P




curtailing the ranQOBEE o al design OLf s A T7 e A
tion about order 1nto the forme

: | ur times i

i inpie 3.10, where 7, and T, each Of:cur{‘ed fo IMEeS 1n the irg

in Examp LT,” IS probably the best solution in the present case, but i
S N

is certainly not 4 general answer to the Prggl?zi)l:ng: it:ter‘:dare Varigy

reasons why it may be impractlcable or undes 2 uce f“fther
constraints into the design. For example we lqse degrees of freedop i
residual in eliminating a SOUrce of variation that1s probably not importam
we make the experiment more complicated and there may alreadyb;
several different systems of grouping in the design, making the introduction
offurther-conditions difl or impossible.

The second method is to reject extreme arrangements whenever they

occur. ie., to rerandomize. For example in the paired compariso

Ohg

position.

experiment, we may decide to reject all arrangements with seven or mor
pairs in the same order. A highly desirable condition in using

Nem27



d, if observer biases like th U
thod, 1 ' ke t
muh’o“ arrangement is to b o of Example 5.6 are 1o be avoided, is
fhat 17 any aTrSES > ¢ rejected, so must all other arrangement,
obtained by permuting the names of the treatments. Thus if the arra ge-
T hers would b Jsccieds SRS e Geringsment il ok
I,T,’s. There would be little likelihood of disagreement over such an
extreme case, but since the decision as to what arrangemnts ;,,__H_L
as unsatisfactory is arbitrary, there could be disagreement with less.
extreme cascs. ThC beSt plan iS, if t'«g:"}:&f(‘ _
are to be rejected before randomization. I._t'.:ls.;‘,___ icult to give

Py N S P ‘: N “q:l;]gu‘.a , .
advice about which arrangements to mjectab\m g =
1o have no hesitation in rejectnng'-.aDXi_%M!fggi‘ % “'*\ S
common-sense grounds to be unsatlsfgct: & '_'ﬂfif.-}.",'-.‘i.f{{-.:_ o
not nearly so important in practlce..a_js;g}pg,fg i o
abe ts occur with appreciabic
dbove, extreme arrangements O VNS ER

8
o

..,“;.'
3
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hod, the rejection of extreme
consequences of randomiza-
estimation of error. although
| t estimates themselves. The
stimate of error will only be unbiased if there is in fact no systematic
der effect. However in single small experiments the estimate of error
very inaccurate anyway. More importan_t,ly«--we'-;ha‘ve' here a mathe-
atical interpretation of randomization: that it leads to desirable pro-
%rties in the long run, or on the average, and on the other hand a practical

Oblem—namely the designing and drawing of useful conclusions from

articular single ex periment that we are now in the process of considering.
ually the concept that our procedures will work out well in the long

f': IS a very helpful one, both qualitatively and in giving a vivfd phxsncal
#lure of the meaning of probabilities calculated in connection with a

rrangements, will falsify the mathematical

S is true of the
in the treatmen
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88 RANDOMIZATION

. : . However to adopt arréngcmcnts that Vf/e susm
fi";:;f“sr;,f,xg;r;;:::;sc things will be all right in the Iopg lru;: 1S to fcgee
our behavior into the Procrustean bed of a mathcm.atlca t eory., ur
object is the design of individual cxpcriments.that .Wl“ w.ork well: good
long-run properties are concepts that help us in doing this, but the exact

fulfillment of long-run mathematical conditions is not the ultimate aim.
The second general matter i< placalys ralnbad oo st o

s eEeeee ~ svowiv IIEDL. Suppose that
We design and carry out a randomized experiment, and that when we come
10 analyze and interpret the results we r

ealize either th:

: > Some particular
For Cxample

» We might have the above
1) 7, and two receiving the

il Pairs receiving the order

order PR ) 'ﬂ% = |

) - . Jam £y SPECLion Y

SUBEESL a substantja| order effect COmmr.ml,).L‘ of the results may
AnOthcr eYyammnls. S

THE PROCRY 'STEAN
APPROACH

Setting Expooure Sundasds for Telecoommumications
Freqoeacy Ulectiomagestic Zadlutinn

AR foa butee of the aripaliton of mbe,
uaderth by poliic BTy, and ndedrtal vemed it -
I rpemse of pudin oAl Pt tiom

Dus Maish D
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DRjeCERR I SIS oncepts AT NTIP ua m avans s, at
Lano.run properties are €O P itant manditions is not the und Pig 1 Pig 2 Pig 3 Pig 4

i of long-run m'duu;l.flu“"" Tz ’\ '- o{hCl’
fulfillmers matter is closely related to the first. }\"‘ﬂ Wt

al .

L e ut a randomized experiment, and that wh €30 o ¢ G G—
e £ 1Y 0 s we realize cither that the ar examPC a
(o analyze and interpret the FeS ne and should pere 15 ¥ L] HE |H
we have used is probably an unfortunate o e janted 2 [ I
rejected, or, by inspection of the results, that there. is s me ff’:or wis U JU JU
form of uncontrolled variation. For example, we might have At OCCY 7 ’ ’ ’

. . : 1 1 l‘ew. Factors

; experiment with, say, SIX pairs recCiving Factors ' .
palrEd Compal'lSOI'l ¢ pe d T T ]nspection Of, 3‘ . |Add Factor HRemove|AddNFﬁfTOl5 [ 1 Sp“t plot de5|gn
T, T, and two receiving the order [y 1. . LIS o e s s |
suggest a substantial order effect comparable to the tre: sy ot | T
Another example would be if an agricultural field | Cocenaton e T T T
randomized blocks shows a systematic trend from one ei;‘;.f.,f
of the experimental area. What do we do in such situations= ::I\:L Variance Compone:t Estimates -

_ : - - PE— B ndom ar cto
In some cases, pOSSIDIy in the nrst, we may 000105'“]#"\;' - Effect  Var Ratio Component Std Error 95% Lower 95% Upper Total
be regarded with suspicion. Suppose, however, that we do W Residvdl 0006l oo0LR  00oME?  00077s 74708
. . . . N Wha Total 0.0038656  0.0017459 0.0018763 0.0120769 100.000
What conCIUSlons we cano The prCVIous dlSC“SSlon Showg ;-,C' —2tLogLike!ihood: 5.2[}3110995-5 -
good enough to say that the long-run properties are valid Whal® - e Cooseess
form .of the uncontrolled variation and on those I? 188 . ed Effect Tests
experimental results by the usual methods. On the other han Source Nparm DF DFDen F Ratio Prob > F
X ' Antibiotic 1 182 131960 0.0783

ducj! modificatinne inta the analucie hacad An fncnanti
anc https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-
obj Split-plot-experiments/ba-p30716

KT T s '-www-.

1201 3.2182 0.0760
12.06 9,2033 0.0019¢
1201 0.3831 0.6898
12.03 0.7022 0.5687
1247 0.6574 0.6849

Timing

Concentration
Antibiotic*Timing
Antibiotic*Conceniration
Timing*Concentration

L B L ba
[in T S I S Ty S L


https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-Split-plot-experiments/ba-p/30716

i The followIng

WV Jwwaavyaw gy~ ~ ;
1 1 ati 3'.' 1OF =

(a) Work through the conventional analysis of the observations igne

the suspected complication. . .
(b) l\g:l:(c a special statistical analysis of the observations taking ace

of the complication in whatever se€ms the most
reader who is not familiar with fairly advanced statnst}ca'l. ¢
probably need statistical advice in this. The method wlll usuall
the analysis of what is known technically as a nonorthogona leas
situation. :
(¢) If the conclusions of the two analyses are for practic
equivalent there is no difficulty. If the conclusions do differ, cz
The assumptions underlying the second analysis shoul

regarded as correct. ¥
(@) In reporting on the experiment, conclusions fi
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SUMMARY 89

'.'.‘.Lgivcn. at any rate briefly. If the first analysis is rejected,

- L

E puld be outlined. The general idea should be to make it
to the reader what has been done and to give him the opportunity
 his own conclusions as far as practicable,

fortunately these difficulties tend to occur infrequently in practice.
nother difficulty that occasionally arises is that there is some practical
n why certain treatment arrangements are not allowable. One

PR

nd it is necessary to remove’ these new canes from each plot.
be possible varieties that resemble each other closely must
close together, thus restricting the randomization. Another

quares of carpet of different types and the whole carpet placed
y corridor. It would often be desirable that the carpet should
atable and this would preclude full randomization of the dyed
i sections. The procedure in such cases is either to do as much
ation as possible or to use a systematic arrangement taking
eps are practicable to avoid bias.




Eur J Epidemiol Causality
DOL 10,1007 /s10654-017-40288-1 )

CUTTER LECTURE There are broadly at least three views of causality in the
literature; for a brief review, see Cox and Wermuth [6].

|I> First, largely in the time series field, there is Wiener-

Statistical science: a grammar for research Granger causality essentially about the ability of one time

series to predict the future of another. Wiener was an
outstanding MIT pure mathematician and Granger an
econometrician.
|I> The second and widely used definition involves the
notion of an exposure being hypothetically changed, other
things being equal. It can be regarded as underpinning the
classical theory of randomized experiments and, general-
ized into broader settings, it has a large and rich literature.
The third notion adds to the second some notion of
evidence-based explanation in terms of an underlying
process, biological or physical perhaps. Of course such
explanations are not “ultimate”. Their danger is that they
can nearly always be manufactured after the event, but very
much more than that is required, typically explicit inde-
pendent evidence. Davey-Smith coined the term triangu-
lation for this view of causality.

Ll 1 1 - L i 4 L (e ]

David. R. Cox'
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Causal Analysis

For causal questions, we need to infer aspects of
the data generation process.

We need to be able to deduce:

- the likelihood of events under static conditions, (as
in standard statistical analysis) and also

- the dynamics of events under changing conditions.



Causal Analysis

“dynamics of events under changing conditions” includes:

- Predicting the effects of interventions.
- Predicting the effects of spontaneous changes.

- Identifying causes of reported events.



Population & Outcome Variable

Define the population by U.
Each unit in U is denoted by wu.

The outcome of interest is Y.
Also called the response variable.

For eachu e U,
there is an associated value Y(u).
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Causes/Treatment

Causes are those things that could be treatments
or conditions in hypothetical experiments.

For simplicity, we assume that there are just two

possible states:

- Unit u is exposed to treatment/condition and
- Unit u is exposed to comparison.



The Treatment/Condition Variable

Let D be a variable that indicates the state to
which each unit in U is exposed.

s

5 1 If unit uis exposed to treatment/condition
= <
O Ifunit uis exposed to comparison

-

Where does D come from?

- In a controlled study:

constructed by the experimenter.

- In an uncontrolled study:

determined by factors beyond the experimenter’s control.



Linking Y and D Potential

outcomes

Y = response variable

D = treatment/condition variable

The response Y is potentially affected by
whether u receives treatment or not.

Thus, we need two response variables:

Y,(u) is the outcome if unit u is exposed to treatment.

Y,(u) is the outcome if unit u is exposed to comparison.
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The Effect of Treatment/Condition on OQutcome

Treatment variable D

5 1 If unit uis exposed to treatment
= <

O If unit uis exposed to comparison

-

Response variable Y

Y, (u) is the outcome if unit u is exposed to treatment

Y,(u) is the outcome if unit u is exposed to comparison

6,=Y,(u)-Y,(u)



Le nez de Cléopatre: s’il eut éte plus court, toute la face

Counterfactuals

For any unit u, treatment causes the effect

6,=Y,(u)-Y,(u)

Fundamental problem of causal inference

For a given unit u, we observe either Y, (u) or Y, (u), it
is impossible to observe the effect of treatment on u
by itself!

We do not observe the counterfactual

If we give u treatment, then we cannot observe what

would have happened to u in the absence of treatment.

de la terre aurait change.

Pascal (1669)

The propensity score (PS) is
the probability of treatment
assignment conditional on
observed baseline
characteristics. The propensity
score allows one to design and
analyze an observational
(nonrandomized) study so that it
mimics some of the particular
characteristics of a randomized
controlled trial.

Warning: PS for an incomplete
blocks design is identical to a

completely randomized design
https://onlinelibrary.wiley.com/d

0i/10.1002/sim.3133
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Smsstal Methods in Medical Resendh

ofy 1-21
Bridging observational studies e 2t petans
- - ookl jourmalsPermis Sons_m
and randomized experiments by DO 10.1177109622802177 40635
- ™ malks mpepubh comdh omeefs mm
embedding the former in the latter SSAGE Designed
experiments
Marie-Abele C Bind and Donald B Rubin
CAUSAL INFERENCE IN
RETROSPECTIVE STUDIES
Abstract PAUL W, HOLLAND
Consider a statistical analysis that draws causal inferences from a me:j‘;ﬁ:[‘;gfm

being valid in the standard frequentist senses; i.e. the analysis pre DONALD B. RUBIN
valid in the sense of rejecting true null hypotheses at the no Harvard University

which are presented as having at least their nominal coverage fc
statements, the analysis must embed the observational study in

- . meaning of causation. Scientists are usually concerned with
Pbﬂ!nﬁd data, or a subset of that Wmcaj_m"dﬂmm dara understanding causal mechanisms. Purely statistical discussions of
involves: (1) a purely conceptual stage that precisely formulate thY  causality are substantially more limited in scope, because the unique

experiment where the exposure is assigned to units; (2) a def  contribution of statistics is to measuring causal effects and not to the
understanding of causal mechanisms or to the meaning of causation,

before any outcome data are observed, {3':]' a statistical -EMI}EE St This distinction is sometimes expressed as “statistics can establish
and non-exposed units of the hypothetical randomized experim correlation, but not causation.” We feel our emphasis on measurement

_ . . i is more appropriate, because it focuses on what statistical theory can
statistical evidence for the sizes of pnsshle causal effects. Stag i contribute to discussions of causality. Measuring causal effects accu-

Q\\
L

@hilﬂsuphinal discussions of causality often emphasize the

Observational

the effort, whereas Scage | demands careful scientific argume rately without any understanding whatsoever of the causal mechanisms
readers of the proffered statistical analysis. Otherwise, the res stu dIeS

" " e . - . - AUTHORS NOTE: A version of ihis article titled * Causal Inference in Frozpeciive and

a presentation of scientifically meaningless arichmetic calcubtio Retrospective Studies™ was delivered at the Jerome Cornfield Memorial Session of the

most scientifically interesting to the dedicated researcher alj American Statistical Association, August 1980, in Houston. The topic of ihe article was

) ) ) . . especially appropriate for thal session since mony imporiant contributions o the rudy of

perspective is rarely implemented with any rigor, for example, health effects from praspective and reirospeciive siudies were made by Jerome Cornfield.

approach using an example examining the effect of parental smo EVALUATION REVIEW, Vol. 12 No. 3, June 1988 203231
in East Boston in the |970s. © 1963 Sage Publications, Inc.



CAUSALITY
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Causal diagrams for empirical research (With Discussions)

-

MODELS. REASONING,

By JUDEA PEARL AND INFERENCE
Cognitive Systems Laboratory, Computer Science Department, University of California, JUDEA PEARL

Los Angeles, California 90024, U.S.A.

JUDEA PEARL

SUMMARY s
The primary aim of this paper is to show how graphical models can be used as a
mathematical language for integrating statistical and subject-matter information, In par- THE
ticular, the paper develops a principled, nonparametric framework for causal inference, in BOOK OF
which diagrams are queried to determine if the assumptions available are sufficient for
identifying causal effects from nonexperimental data. If so the diagrams can be queried WHY

to produce mathematical expressions for causal effects in terms of observed distributions;
otherwise, the diagrams can be queried to suggest additional observations or auxiliary
experiments from which the desired inferences can be obtained. THE NEW SCIENGE

OF CAUSE AND EFFECT
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Seeing
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ACTIVITY:
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»
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[ 3. COUNTERFACTUALS =

Imagining, Recraspecnon, Understanding
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(Was it X thar caused Y7 Whar of X had noc
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What does 2 servey el us sbaout ghe
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Graph Terminology

* Nodes — vertices on a graph (X;)

* Edge — line or arrow connecting two nodes
* Adjacent —two variables connected by an edge

e Path — sequence of edges (p)
 Directed Path — arrows at the end of every edge

e Acyclic — No loops

* DAG — directed acyclic graph (G)
e Parents, children, descendants, etc.



W

WET
QL1: If the season is dry, and the pavement is slippery, did it rain?

Al: Unlikely, it is more likely the sprinkler was ON. l
Q2: But what if we see that the sprinkler is off? @ SLIPPERY
A2: Then it is more likely that it rained

Q3: Do you mean that if we actually turn the sprinkler
off, the rain will be more likely?

A3: No, the likelihood of rain would remain the same
150



From Bayesian Networks to Causal Graphs

A DAG G is a causal graph or structural causal network (SCN) if,
Age

for each node X;,with parents PA,, Z
we have X;=f; (PA;,e;),
e; independent random variables

X Qv

and f; a deterministic function. Walking Health



A Structural Causal Network

Age

Z Is walking
Z is a confounder good for
of the causal
relationship your
between XandY  y Oy health?

Walking Health



What we have

Texture

Drainage Micro flora

Seed fertility '

Fertilizer
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What we want

Texture

Drainage Micro flora
Other
Seed fertility

P

B

Fertilizer =1
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What we get

with

randomizaton
Texture Drainage Micro flora )
Seed fertility & ~y L - | ot ;
- N -~ N ~
y S

~~

Fertilizer =1

https://foreignpolicy.com/2019/10/22/economics-development-rcts-esther-duflo-abhijit-banerjee-michael-kremer-nobel/

Abhijit Banerjee and Esther Duflo: The Nobel couple fighting poverty
The team pioneered “randomized controlled trials”, or RCTs, in economics. https://www.bbc.com/news/world-asia-india-50048519 155



https://foreignpolicy.com/2019/10/22/economics-development-rcts-esther-duflo-abhijit-banerjee-michael-kremer-nobel/
https://www.bbc.com/news/world-asia-india-50048519

Example 1 The M-bias

/\/ ’“\

X = gxposure of interest Back door path

Y = disease

7.=type of car owned by patient there is no need to
A=age control for anything

T ———— e ———
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VACAN

* The back-door criterion suggests that the effect of X and Y is not
confounded by A, Z or E.

* The only arrow into X is the one traversing (X, E, Z, A, Y) and this
path contains two arrows pointing head-to-head at Z.
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AR

Consequences of Adjusting for Z

e Statistically adjusting for Z, when estimating the effect of X on
Y, will give a biased effect estimate.

* Thus, one should not necessarily “control” for every variable
that is related to both the disease and the treatment/exposure
of interest.
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Example 2 The expanded M-bias

What variables
one needs to
adjust to get
unconfounded
effect of X. (risk
variable) on X; ——— N\
(outcome). o .

Fig. 2. A diagram representing the back-door critedon:

adjusting for varables {X;, X} or {X,, X} violds a
consisient estimate of prix,| ).

Causal diagrams for empirical research

7R

i1
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g ‘//\//}{2 The expanded M-bias

A \/

In this case, one could adjust for {X;,X,} or {X,,X:}
but not just for {X,}.

A1
: j E ;4 ¥, /
/ Mo
X T
KB |
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Rules to control information from A to C

1. In a chain, A ->B ->C, controlling for B prevents information
about A, through B, from getting to C

2. In a fork, A <- B -> C, controlling for B prevents information
about A, through B, from getting to C

3. In a collider, A -> B <- C, the opposite holds. A and C start
independent so that information about A tells nothing about C,
but, controlling for B, causes information, through B, to flow

4. Controlling for descendants is partially controlling for the
variable itself. Controlling for a descendant of a collider partially
opens the information flow.



d (directional) - separation vs. d - connected

A path, p, is said to be d-separated by a set of nodes Z if and only if:

1. p contains a fork j«—m—j or a chain i—m—j such that the middle
node misin Z or

2. p contains an inverted fork (or collider) i —m+« j such that the middle
node mis not in Z and such that no descendent of mis in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path
from a nodein Xtoa nodein.

A pair of d-separated nodes are independent.



SPRINKLER @ @ RAIN
o W
X={X5} and Y={X3} are d-separated by Z={X4}. @ b
The path X, — X4 — X3 is blocked by collider X4 @ SLIPPERY

However, X and Y are not d-separated by Z'={X1,
Xs} since Xs Is a descendant of the collider, X,.

So, knowing Xs causes X, and X3 to be dependent
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When we intervene on a variable in a model,
we fix its value and change the system. Values

| nte rve ntlo n S | n Ca u Sa ‘ G ra p h S of other variables often change as a result.

When we condition on a variable, we change
nothing only narrow focus on a subset of cases.

The causal effect of a variable (node) X, can be defined as how the
outcome, Y, changes when this variable is set to some value, thereby
breaking the influence of predecessors.

This basic insight translates into the G-estimation algorithm of Robins
(1986).

After intervening in the graph, by setting X; = x,, then the joint
distribution of the data becomes:

P(Xy, X2,y Xn) [ P(X; | p&) 1 X=Xy
0 If X. # X

P(Xy, X2p.ey X | Xit) :{
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ACE=P(Y=1|do(X=1))-P(Y=1|do(X=0))

Rule 1: Ignoring observations
P(y | do{x}, z, w) = P(y | do{x}, w)
if (YLZXW)Gw

Do calculus

Rule 2: Action/observation exchange

P(y | do{x}, do{z}, w) = P(y | do{x},z,w)
it (Y LZXT )G

A
Rule 3: Ignoring actions

P(y | do{x}, do{z}, w) = P(y | do{x}, w)
(VL ZX ) Gy

SO OROROLO

FIGURE 1. Network Pre and Post Intervention.

Adjustment formula P(Y = y|do(X = x)) = SumP(Y =y|X =x,Z = z)P(Z = z)
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ACE=P(Y=1|do(X=1))-P(Y=1|do(X=0))

Recovery rates with and without drug [(Y=1)/n]

e orug0ct) | NoDrug -0

Men (2=0) 81/87 (93%) 234/270 (87%) Do calculus
Women (z=1)  192/263 (73%)  55/80 (69%)
Total 273/350 (78%)  289/350 (83%)

P(Y=1|do(X=1))=P(Y=1|X=1, Z=1)P(Z=1)+P(Y=1|X=1, Z=0)P(Z=0)
Recovery
rate due

P(Y=1|do(X=1))=(0.93(87+270))/700 + (0.73(263+80)/700) = 0.832
P(Y=1|do(X=0))=(0.87(87+270))/700 + (0.69(263+80)/700) = 0.7818

ACE=P(Y=1|do(X=1))-P(Y=1|do(X=0))= 0.832 - 0.7818 = 0.0502

Adjustment formula P(Y = y|do(X = x)) = SumP(Y =y|X =x,Z = z)P(Z = z)
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ACE=P(Y=1|do(X=1))-P(Y=1|do(X=0))
The Causal Effect Rule

Do calculus

Given a graph G in which a set of variables PA are designed as
the parents of X, the causal effect of X on Y is given by

P(Y = y|do(X = x) = SumP(Y = y|X = x,PA = z)P(PA = 2)

Where z ranges over all the combinations of values that the
variable PA can take.

P(Y =y|do(X =x) =SumP(X =x,Y =y,PA=2)/P(X = x|PA = z)
Propensity score =P(X — x|PA — Z)VV

Adjustment formula P(Y = y|do(X = x)) = SumP(Y =y|X =x,Z = z)P(Z = z)
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Lord’s Paradox and Causal Graphs

“A large university is interested in investigating the effects on the students of the diet provided in the university dining halls.
Various types of data are gathered. In particular, the sex and weight of each student at the time of his arrival in September and
his weight the following June are recorded.” (Lord, 1967). Lord posits two statisticians who use different but respected
statistical methods to reach opposite conclusions about the effects of the diet provided in the university dining halls on

students' weights.

One statistician does not adjust for initial weight or sex; using analysis of variance (ANOVA),
and treating gain scores (June - September) as the outcome, he finds no significant
difference between dining halls and states that there is no evidence of any effect of diet on
student weights. The second statistician adjusts for initial weight; using analysis of
covariance (ANCOVA), and treating June weights as the outcome, he finds a significant

difference between the two dining halls.

PSININN s there an effect? |
Diet A (Hall 1) X, A
Diet B (Hall 2) X5 ¥, (Yg=Y)) —rXg=X,)=D—rD=(1-r)D, e

(Ya=Xg) = (V)= X,) = (Ys—=Ya) —(Xz—X,) =D—-D=0. «—— Who s right? —

120 4

100

80

Weight in June (Kg)

T T T T
40 60 80 100 120

Weight in September (Kg)

In neither halls students gain weight but in each stratum Hall 2 tend to gain more weight than Hall 1 108



Lord’s Paradox and Causal Graphs (Original)

. : Sex strongly affects the
Consult the story behind the data. What is gly |
Account for S. The variable of Initial weight th? jffect percentages of students in
. . . o (0] |etS h tr t m
interest is G. Wi on Boys each stratu
and Girls Wiews
G =Wf-Wi

100

No backdoor between S and G
need to be blocked so the S
aggregated data provides the  Sex
answer (statistician one).

Final weight

80

Weight in June (Kg)

T T T T
40 60 80 100 120

Wi is a mediating variable of S and
G, and controlling for Wi provides
the direct effect of S on G.

Weight in September (Kg)

169



http://causality.cs.ucla.edu/blog/index.php/2019/08/13/lords-paradox-the-power-of-causal-thinking/

Lord’s Paradox and Causal Graphs (Adapted)

, _ T The Hall very strongly
Consider another story behind the nitial weight effect (€] affects the percentages of

data. Account for Hall (Diet). Wi o SrudlE T students in each stratum
of diet in

Hall 1 and Wi=WF
Hall 2

Again, the variable of interest is G.
Wi is a confounder for D and WH.
Controlling for Wi de-confounds D
and Wf, as well as D and G.

120 4

100

Final weight

Weight in June (Kg)

P(Gain | Diet=A) = P(Gain | Diet=B) % D
P(Gain|do(Diet=A)) = P(Gain|do(Diet=B)) Diet

Association: G 0
Switching from Diet A to Diet B has no effect Gain

40

T T T T
40 60 80 100 120

Weight in September (Kg)

(Y5=Xg) = (Y= X)) = (V5= Y)) = (X, —X,) =D-D=0.
Causation: P(G|do(Diet) = Y. {Wi} P(G|Diet, Wi) P(Wi)

Comparing gains in Diet A versus Diet B, for students with same intial weight, shows higher gain with Diet B 170
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https://errorstatistics.com/2019/08/02/s-senn-red-herrings-and-the-art-of-cause-fishing-lords-paradox-revisited-guest-post/
https://errorstatistics.com/2018/11/11/stephen-senn-rothamsted-statistics-meets-lords-paradox-guest-post/amp/

Lord’s Paradox and Causal Graphs

TREATMENTSTRUCTURE Diet

theory & drug regulation disagrees. 5ee TARGET
_ -c_}rll'l_r_nglibrary.wiley.com,fdoifabsﬂ{].1[![!... for evidence.

Stephen John Senn @stephensenn - Aug 15 ~
e o L. ; } COVARIATE Base
[) | don't find the equation in the tweet but the key issue is how are any
parameters estimated ii) This shows a weakness of the DAG approach since ANOVA Weight
the two cases are fundamentally different. Compare fig 1& fig 3 of my blog.
O 1 () Q1 Ty .
Back door adjustment formula
Judea Pearl @yudapearl - Aug 15 w
The adjustment equation is this:
P(Y|do(Diet)) = 3W_| P(Y|Diet,WI) P(WI) - .
taken from ucla.in/2YZJVFL, and telling us precisely how things are Ave Ira ge Ca Usal EffeCt Of an Inte rve nt|0ns
estimated. Mo weaknesses, no "two cases”, no complications -- straight . . . .
causal analysis and a paradox dissolved. #Bookofwhy by flrSt eStlmatlng |tS EffeCt at eaCh Ievel
Q1 0 O & of the de-confounder.
Stephen John Senn @stephensenn - Aug 15 A
1/2) The terms in such an equation have to be estimated to be of any use :
and as statistical theory teaches and as the simulations in Fig 1 & Fig 3 of my Then’ com pute d We|ghted ave r‘age Of
post show, design matters. See also Holland & Rubin. .
O 1 o O 1 , those levels, where each level is
‘ Stephen John Senn @<tephensenn - Aug 1 y weighted according to its prevalence in
2/2) Are you claiming that varying treatment within or between centres in :
clinical trials is a distinction that is irrelevant to interpretation? Statistical the po pu Iatlo n.
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A Structural Causal Model

Definition: A structural causal model is a 4-tuple
(V, U, F, P(u)), where
« V={V,,...,V,} are endogeneus variables
e U={U,...,U_} are background variables
 F={f,,..., f.} are functions determining V,
v, = f,(v, u) eg, Y=o +pPX+ Uy
e P(u) is a distribution over U
P(u) and F induce a distribution P(V) over observable
variables




A Structural Causal Network

X = Treatment X=¢1
Z = Study Time Z=PX+¢eo

Y = Score Yy =o0oX+7yZ+¢€3

Data shows: a=0.7,3=0.5,y=0.4
A student named Joe, measured X=0.5, Z=1, Y=1.5
Q,: What would Joe’s score be, had he doubled his study time?

173



€9 €2 =0.75 €2 =0.75

Z . v ,Z=2.0
=05/ \y=04 B=05 . N y=04
€1 eg €=05 : . €3=0.75

X o=07 Y X=05a=07 Y=15 X=05a=07 Y=19

Q,: What would Joe’s score be had he doubled his study time?
Answer: Joe’s score would be 1.9
Or,

In counterfactual notation:

“do” calculus example
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€9 €2 =0.75 €2 =0.75
7 Z=1.0 v . 7=20

B=0.5 y=0.4 B=0.5 y=0.4 v=0.4

€1 g3 €=0.5 €3=0.75 ¢ = 0.5//" €3=0.75

X oa=07 Y X=05a0=07 Y=15 X=05a=07 Y=19

Q,: What would Joe’s score be, had the treatment been 0, and
had he studied at whatever level he would have studied had
the treatment been 17

g9 =0.75 £ =0.75
7100 v Z =125

=0.5 v=04 B=0. v=0.4
Slli 0.5 €3=0.75 €= 0.5}/ €3=0.75
v v,
X=050=07 Y=235 X=0 a=07 Y =225




Internal and

external validity

RANDOMIZED EXPERIMENTS AND OBSERVATIONAL
STUDIES: CAUSAL INFERENCE IN STATISTICS

PAUL R. ROSENBAUM

ABSTRACT. This talk describes the theory of causal inference in randomized
experiments and nonrandomized observational studies, using two simple theo-
retical /actual examples for illustration. Key ideas: causal effects, randomized
experiments, adjustments for observed covariates, sensitivity analysis for un-
ohserved covariates, reducing sensitivity to hidden bias using design strategies.

1. SEVEN KEY CONTRIBUTIONS TO CAUSAL INFERENCE

1.0.1. Ronald A. Fisher (1935). The Design of Experiments. Edinburgh: Oliver
& Boyd. Although Fisher had discussed his randomized experiments since the
early 1920’s, his most famous discussion appears in Chapter 2 of this book, 1n
which Fisher’s exact test for a 2 < 2 table 1s derived from randomization alone 1n

the experiment of the ‘lady tasting tea.’

1.0.2. Jerzy Neyman (1923). On the application of probability theory to agri-
cultural experiments. Essay on principles. Section 9. (In Polish) Roczniki Nauk
Roiniczych, Tom X, ppl-51. Reprinted in Enghish in Statistical Science, 1990, 5,
463-480, with discussion by T. Speed and D. Rubin. In this paper, Neyman writes
the effects caused by treatments as comparisons of potential outcomes under alter-

native treatments.
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Causal, Casual and Curious

. o Judea Pearl*
Generalizability and Generalizing Experimental Findings
transportability 001 10,1515 2015-0025

Abstract: This note examines one of the most crucial questions in causal inference: “How generalizable are
randomized clinical frials?™ The question has received a formal reatment recently, using a non-parametric
sefting, and has led to a simple and general solution. | will describe this solution and several of its
ramifications, and compare it to the way researchers have attempted to tackle the problem using the
language of ignorability. We will see that ignorability-type assumptions need to be enriched with structural
assumptions in order to capture the full spectrum of conditions that permit generalizations, and in order to
judge their plausibility in specific applications.

Keywords: generalizability, transportability, selection bias, admissibility, ignorability

1 Transportability and selection bias

The long-standing problem of generalizing experimental findings from the trial sample to the population as
a whole, also known as the problem of “sample selection-bias” [1, 2], has received renewed attention in the
past decade, as more researchers come fo recognize this bias as a major threat to the validity of expen-
mental findings in both the health sdences [3] and social policy making [4]. Since participation in a
randomized trial cannot be mandated, we cannot guarantee that the study population would be the same
as the population of interest. For example, the study population may consist of volunteers, who respond to
financial and medical incentives offered by pharmaceutical firms or experimental teams, so, the distribu-
tion of outcomes in the study may differ substantially from the distribution of outcomes under the policy of
interest.




Query of interest: Q = P*(y | do(x))
Target population

Arkansas New York Los Angeles

Survey data Survey data Survey data

available Resembling target Youngi_sh
population

Boston San Francisco Texas

Age not recorded High post-treatment Mostly Spanish
subjects

Mostly successful blood pressure
lawyers High attrition

Toronto Utah Wyoming

RCT, paid RCT, young
volunteers, athletes

College students unemployed

Randomized trial




I1 [T*

X Y X Y
(Intervention) (Outcome) (Observation) (Outcome)

Experimenta| study in LA Observational study in NYC
Measured: P(x,y,7) Measured: P*(X,V,2)

P(y|do(x),2) P*(2) # P()

Needed: P*(y|do(x)) = ? ;P(yldo(x),z)P*(z)

Transport Formula (calibration): F(P,Pgq. P*)

https://cran.r-project.org/web/packages/causaleffect/causaleffect.pdf

Pearl, J. 2009. Causality: Models, Reasoning, and Inference. Cambridge University Press


https://cran.r-project.org/web/packages/causaleffect/causaleffect.pdf

JASA, 2000, 95(450), pp. 441-448

Causal Inference Without Counterfactuals
A. P DAWID '

A popular approach to the framing and answering of causal questions relies on the idea of counterfactuals: outcomes that would
have been observed had the world developed differently; for example, if the patient had received a different treatment. By definition,
one can never observe such quantities, nor assess empirically the validity of any modeling assumptions made about them, even
though one's conclusions may be sensitive to these assumptions. Here [ argue that for making inference about the likely effects of
applied causes, counterfactual arguments are unnecessary and potentially misleading. An alternative approach, based on Bayesian
decision analysis, is presented. Properties of counterfactuals are relevant to inference about the likely causes of observed effects,
but close attention then must be given to the nature and context of the query, as well as to what conclusions can and cannot be
supported empirically. In particular, even in the absence of statistical uncertainty, such inferences may be subject to an irreducible
degree of ambiguity.

KEY WORDS: Average causal effect; Causes of effects; Causation; Determinism; Effects of causes, Metaphysical model; Potential
response; Treatment-unit additivity.

FactTFictic-n. Are counterfactuals to be regarded as gen- Helpful-Dangerous. Can use of counterfactuals stream-
unge fe?tures of 123 external world, or are they purely line thinking and assist analyses, or do they promote
theoretical terms? misleading lines of argument and false conclusions?

Real-Instrumental. Can any inferences based on counter-
factuals be allowed, or should they be restricted to
those that could in principle be formulated without
mention of counterfactuals?

Clear—Vague. Do counterfactual terms in a model have counterfactuals
a clear relationship with meaningful aspects of the
problem addressed? Can counterfactual constructions
and arguments help to clarify understanding?

Dimensions for assessing
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Causality
Statistical Causality from a
Decision- T heoretic Persp ective

Statistical Perspectives and Applicabions

Edited by
A. Philip Dawid
Carlo Berzuini * Philip Dawid * Luisa Bernardinelli
Sratiztical Laboralory, Centre for Mathematical Sciences Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WB, United
Umiversity of Cambridge, Cambridge, UK Kingdom; email: apd@statslab.cam.ac.uk

4.9 Postscript

The existence of a variety of different formal explications of statistical causality is somewhal
embarrassing — we can only pray for the arrival of a messianic figure who (just as Kolmogoroy
did for probability theory) will sweep away the confusion and produce a single theory that
everyone can accept. Meanwhile, let us put a positive gloss on this babel of different languages:
since different people seem to find different approaches naturally appealing, there may be
something for everyone. In that understanding I suggest that DT deserves careful attention
from those who currently choose to think about statistical causality in other terms.
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Partial Dependence Plot and Causality

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5):1189{1232, 2001.

@ Given the output g(x) of a machine learning algorithm (commonly PDP i .
is the same as Pearl's back-door
estimates E[Y|X = x]), the PDP of g on a subset of variables Xg is

defined as (let C be the complement set of §) adjustment formula!

gs(xs) = Ex.[g(xs. Xc)] = /g(x& xc)dP(xc). A set of variables X, satisfies the back-door criterion

with respect to X and Y if

1) No node in X, is a descendant of X, and

Elg(Xs, Xc)|Xs = xs] = /g(xszxc)dP(Xc:IXs — xs). 2) X; blocks (d-separates? every back-leoor path
between X and Y (contains an arrow into X;).

@ This is different from the conditional expectation

Back-door adjustment

If the causal relationship of (X, Y) can be represented by a graph and X satisfies @ @
a graphical back-door criterion, then
P(y|do(Xs = xs)) = /P(y|do{X5 = xs5), Xe = x¢) dP(x¢) Xs= X,
= fPU’P(S = Xs,Xe = xc) dP(xc). X1 » Y Xc= {X3}, {Xa} or {Xs; Xa}.
Here P(y|do(Xs = xs)) stands for the distribution of Y after we make an
intervention on Xs that sets it equal to xs.
X2

o E(y|do(Xs = xs)) is essentially E[Y(xs)] in the Neyman-Rubin

183
potential outcome framework.



Agenda

Background on causality in science and statistics

Fishbone cause and effect diagrams

Bayesian networks

Randomization in experimental designs

Propensity scores in observational studies

Counterfactuals and do calculus

Personalized medicine, condition based maintenance and Industry 4.0
Future research areas
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Generalizability

Statistical Scientific
generalizability generalizability
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RON S. KENETT | THOMAS C. REDMAN

THE REAL WORK OF

DATA SCIENCE

HOW TO TURN DATA INTO INFORMATION,
BETTER DECISIONS, AND STRONGER ORGANIZATIONS

https://www.amazon.co.uk/Real-Work-Data-Science-
organizations/dp/1119570700/ref=sr 1 7?s=books&ie=UTF8&q
id=1550994497&sr=1-7&refinements=p 27%3ARon+S.+Kenett

“A higher calling.”

“The difference between a good data scientist and a great one.”
“Learn the business.”

“Understand the real problem.”

“Get out there.”

“Sorry, but you can'’t trust the data. Deal with it.”

“Make it easy for people to understand your insights.”
“When the data leaves off and your intuition takes over.”
“Take accountability for results.”

10.“What does it mean to be ‘data-driven,”

11."Rooting out bias in decision-making.”

© 0O NOoO A WDNPRE

12."Teach, teach, teach.”

13.“Evaluating data science outputs more formally”
14.“Educating senior management.”

15."“Putting data science, and data scientists, in the right spots.”
16.“Moving up the analytics maturity ladder.”

17.“The industrial revolutions and data science.”

18. Epilogue
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Level 5: Learning and discovery - This is where attention is paid to R
Information quality. Data from different sources is integrated. Chronology

of Data and Goal and Generalization is a serious consideration in

designing analytic platforms. Leverage causality models.

Level 4: Quality by Design - Experimental thinking is introduced. The data
scientist suggests experiments, like A/B testing, to help determine which
website is better. Develop causality analysis.

Level 3: Process focus - Probability distributions are part of the game.
The idea that changes are statistically significant, or not, is introduced.
Some attention is given to model fitting. Introduce causality analysis.

Level 2: Descriptive statistics level — Management asks to see
histograms, bar charts and averages. Models are not used, data is
analyzed in rather basic ways.

Level 1: Random demand for reports driven by firefighting - New reports
address questions such as: How many components of type X did we
replace last month or how many people in region Y applied for a loan?




Condition Based Maintenance (CBM)
Health and Usage Monitoring Systems (HUMS)
Prognostics and Health Management (PHM)

I\/Ionitoring_I

Diagnostics
Prognostics
Prescriptive |

MTBEF statistical expected life —

Potential safety risk Analytics
without prognostics Current

/|

%/ service  Additional use gained with
Y life prognostics/diagnostics

Design life of
component Sensor

technology

Severe usage

Life consumption

Time-based service without
diagnostics/prognostics

Mild usage

Time in operation

Source: Economic and Safety Benefits of Diagnostics & Prognostics (Romero et al. 1996) 00514
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Monitoring

Diagnostics
Prognostics
Prescriptive

SingL"aritYHUb TOPICS IN FOCU

Using Big Data to Give
Patients Control of Their
Own Health

By Shelly Fan - Nov 07,2018 @ 4,298

Dr. Ran Balicer at Exponential Medicine

Picture this: instead of going to a physician with your ailments, your doctor calls
you with some bad news: “Within six hours, you're going to have a heart attack.
So why don’t you come into the clinic and we can fix that.” Crisis averted.
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Company Solutions Contact us Q

Monitoring and
Diagnostics

NS i

Monitoring anytime, anywhere

Continuous Remote Patient Monitoring Solutions
Mobile Monitoring and Analysis Software for Early Detection of
Life-threatening Conditions and Trends

Continuous Remote Triage and Monitoring of Multiple Diseases and

Conditions From a Single Wearable Solution

Hospital Monitor HOLTER Blood Pressure  Fall Detecting ECG Monitor

Mt

Stethoscope Sp02 Monitor Obstructive Sleep Apnea

ATLASense Bi

Cloud  /ue ~
"@ Al, Predictive —
’ analytics, Advanced

algorithms, Big data

(GC/\RETEK

Predictive analytics, _
trends and alerts Customization Mobile

And thresholds ~ gateway

. Patented Technology, Universal
—/ Interface for all diagnostic algorithms
&5 r—

Alerts Tl(g Healthcare Dashboard
notificat] g’ providers  Administration and
remote control




Prognostic analysis

ORIGINAL ARTICLE

Change in Systolic Blood Pressure During Stroke, Functional
Status, and Long-Term Mortality in an Elderly Population
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Information
Quality (InfoQ)

Traditional Data Sources

Small volume — low statistical power

Limited variety — Biased estimates

Low velocity — estimates may not be i
valid in the future /& 9

Untapped Sources

High volume — high statistical
significance - small p value
High variety — small bias

High velocity — dynamic update of
estimates
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Information Quality (InfoQ)

% InfoQ - JMP Pro

Help

Thisis a rating-based approach to guantifying InfoQ that scores
each of the eight dimensions. This coarse grained approach rates

each dimension on

a 5 point scale, with 5 indicating "Very High”

achievementin that dimension.

The ratings are then normalized into a desirability function for each

dimension, which are then combined to produce an overall InfoQ
score using the geometric mean of the individual desirabilities.

By dragging the slider handles, each dimension can be assigned a

plausible range of ratings, or a specific rating.

InfoQ

Lower Bound: 049
Upper Bound: 0.75

o
InfoQjmpaddin

https://community.jmp.com/t5/JMP-Add-

Ins/Calculate-InfoQ-score-with-JIMP/ta-p/34898

Data Resolution
High ===} Very High
Data Structure
Acceptable c———=mm(=—> High
Data Integration
High ==} Very High
Temporal Relevance

High co——————x(jmm(> Very High
Chronology of Data and Goal
Acceptable e=——=mm{=> High
Generalizability
—mm{——> Acceptable
Operationalization

Acceptable e=—=—=mm{=> High

Communication

—=m{=———x Acceptable

LWhat
InfoQ Components

InfoQ(f,X,g) = U(f(X|g))

InfeQ Score

B~

[ |

# Dimension Note Value Index
1|Data resolution 5 1.0000
2|Data structure 4 0.7500
3|Data integration 5 1.0000
4|Temporal relevance 5 1.0000
5|Generalizability 3 0.5000
6|Chronology of data and goal 5 1.0000
7|Concept operationalization 2 0.2500
8|Communication 3 0.5000
InfoQ Score = 0.68
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https://community.jmp.com/t5/JMP-Add-Ins/Calculate-InfoQ-score-with-JMP/ta-p/34898

Big data Causality

Unbiased
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~ Statistical
Volume Significance

Operationalization of findings
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An historical perspective

@ L2 [ 3 4 @ 6
Product Process Service Management Design Information
Quality Quality Quality Quality Quality Quality

1800 1900 1950 1960 1980 2010

Eli Whitney
(1765 — 1825)

Walter Shehart
(1891 — 1961)

EdWards Deming
(1900 — 1993)

Joseph Juran
(1904 - 2008)

George Box
(1919 — 2013)

Genichi Taguchi
(1924 - 2012)

RON S. KENETT | THOMAS C. REDMAN

THE REAL WORK OF

DATA SCIENCE

HOW TO TURN DATA INTO INFORMATION,
BETTER DECISIONS, AND STRONGER ORGANIZATIONS

Monitoring

Diagnostics
Prognostics
Prescriptive
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https://papers.ssrn.com/sol3/papers.cfm?abstract id=3033588

Applications and Theoretical Results of Association Rules and
Compositional Data Analysis: A Contingency Table Perspective

Marina Vives-Mestres®, Josep Anton1 Martin-Fernandez* Santiago

Thio-Henestrosa® Ron S. Kenett™

Abstract: Association rule mining was originally developed for basket analysis. To generate
an association rule, the collection of more frequent itemsets must be detected. The association
rules are then ranked using measures of interestingness. Using the associaton rule expression
as a contingency table a representation on the unit simplex is appropiate. Compositional
data analysis provides nice properties such as subcompostional coherence and scalability. We
explore here the implication of compositional data analysis to association rule mining in large
databases and big data and propose compositional measures of interestingness. Visualization
of compositional measures on a simplicial representation of the itemsets gives new insights
in association rule mining. The case study used here to demonstrate our approach is derived
from a medical data set of side effects from Nicardipine.

B ‘B

A xv1 o

FA x3 14
B ‘B

A X /XpX3 Xp /XXy
‘A X34/ X1Xg Xgo/XpX3

Tind of AR {A = B}

B ‘B
A lf«.”fle.'g 1}«,}'1’1.}(4
‘A 1/’1.1'.]('11'4 lxﬁfoxE

Tt of AR {A = B}

ilr-coordinates 1y il ilr3

T (2 V2 (2) vz (2)

2 \xx3/ 2 T\x,) 2 7 \xg
V2 ox\ V2. /x
Tina 0 —In (—1) —In (—2)
X4 2 X3
T 1. /xix
o —In (2) 0 0
2 X9X3
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C
A: antecedent "» B: consequent B B
A 1 x
P‘FU‘ CA X3 X4
Pﬂﬂ P{}+
P 1 - B

A x/xpx3

xz,‘.n'.lf'l.]f'dl

- SUPPORT How frequentis the itemset {A, B}?
support {A,B}= S{A,B}= py

‘A X34/ X1Xg X/ X32X3

Tind of AR {A = B}

- CONFIDENCE Among the antecedent A, how frequent is the consequent B?
confidence {A 2 B}=C{A 2> B}=p,1 / Ps-

B ‘B
A 1{1;:{2:{3 1/«,!’1’11’4

« LIFT Deviation of the support from that expected under independence

lift {A=> B} = S{AB}/(S{A}S{B}) =P /(P1.Ps) ‘A 1/ /xixy 1/ /x5x5
<1 2 when A holds, support of B decreases Tint of AR {A = B}
lift {A =2 B} =1 =» No association between A and B

1 =» when A holds, support of B increases
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X2X3 2 Xy X3
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From association to causation

Discover causal rules from large databases of binary variables

1 1 1 1 1 1 1 14 iTran&acticns on Machine Learning . b . Publishi
and Data Mining ublishin
1 0 1 1 1 1 1 8 1-'5.11)_ It‘Johg (2008) 83-96 1 al . )
© ISSN:- 1865-6781 (Journal), www.ibai-publishing org
1 1 0 1 0 1 1 15 IBal Publishing ISSN 1864-9734
o 1 1 1 1 1 1 8 A2>Y
0 1 0 0 0 0 0 5 C2>Y
0 0 0 0 1 0 1 6 BF2>Y Relative Linkage Disequilibrium Applications to
Aircraft Accidents and Operational Risks
DE->Y I
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1 0 1 1 1 0 0 3 Ron S. Kenett' and Silvia Salini®
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Discover causal association rules from large databases of
binary variables

A B C D E

o O r r O O O F ~»r B

From association to causation
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From association to causation

Discover causal association rules from large databases of
binary variables

L A0 '
v=1 Y=0 OddsRatiODf (A->))=2

Y=1 Nyq PP n21

A * A: Exposure variable
1 - {B,C,D,E,F}: controlled variable set.
1
1 « Rows with the same color for the
1 controlled variable set are called

Fair

dataset o.
0
0
0

[ [

0 10 1 11

1 01 010

0101 00 _
||| matched record pairs.
HEEEN -

010110

S I A 1

0101 0 1

Y=0 N,y Nys

An association rule A > Y is a causal association rule if: OddsRatio, (A—>Y)>>1




From association to causation

Discover causal association rules from large databases of
binary variables

-E-m---- 1. Remove irrelevant variables (support, local

support, association)
For each association rule (e.g. A2 Y)

1 1 0 1 0 1 o0 1 2. Find the exclusive variables of the exposure
variable (support, association), i.e. G, F.

. |B |c |p [E [y | The controlled variable set = {B, C, D, E}.

1 1
I 3. Find the fair dataset. Search for all matched record pairs

B 4. Calculate the odds-ratio to identify if the testing rule is causal

o ENENENEN o 5. Repeat 2-4 for each variable which is the combination of
variables. Only consider combination of non-causal factors.
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Cual. Reliah. Engng. fnr. 2007; 23:653 663
Published online 12 June 2007 in Wiley InterScience {www.inkermscience. wiley.com). DOI: 1001002 gre 86

Special Issue

Joseph M. Juran, a Perspective
on Past Contributions and F uture
Impact

A. Blanton Godfrey!-1-1 and Ron S. Kenent?- = 1-3.4

I-C'ah'rge af Textiler, North Carofing State Unrversify, ULSA.
-
“KPA Lid., Prrael

This paper combines presentations by the authors in a special session dedicated to the
work of Joseph M. Juran at the sixth annual conference of the European Network for
Business and Industrial Statistics in Wroclaw, Poland. The paper offers an historical
perspective of the comributions of J. M. Juran o management science emphasizing
aspects of cause and effect relationships and Integrared Models. Specifically, the pa-
per presents the Juran concepis of Management Breakthrough, the Pareto Principle,
the Juran ]''1'':l'.‘.1?J‘-*?,‘_',.r'°:i'!I and Six Sigma. The impact of these contributions, put in an
historical perspective of key thinkers who investigated cause and effect relationships,
is then discussed. The impact of these contributions to modern Integrated Models is
then assessed. Copyright © 2007 John Wiley & Sons, Lid.

Received 29 January 2007 ; Revised 16 April 2007; Accepred 18 April 2007

KEY WORDS: ). M. Juran; the Juran Trilogy™; Management Breakthroughs; the Pamto Principle; Six
Sigma; quality systems: Integrated Models: cause and effect mrelationships

Causality in management

The Juran Trilogy®
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5. CAUSE AND EFFECT MOIELS

Al a pre sentation celebrating 50 years to the establishment of a Masters Degree in Statistics in Noraay Odd
(. Aalen has been qu:-ted a5 EI.EIUHE 11'|aL '.‘.'n'r::rrnrs ix m;mn.mr becanse o i conceived ay conuributing i a
pence af a mechanisic undersarding.
[y amyrhuing abow consaliy. This is a

Ca usa I ity in SCience ith cansality (e.g. Cox™). A famous

iermany and the number of obsared
ing variable, time'". Sketch a scatter
plod of populalion sme versus number o able Delow and youn will see what we mean, if a
case and effect relationship s implied by the data. This 'EL111|:|'12 plot has been used in hundreds of statistics
courses—and now in almost every Six Sigma course—to wam students of the dangers of assuming causality
too quickly.

Year 1930 1931 1932 1933 1934 1935 1936

Population in thowosands 50 52 G a7 aa 73 Th
Mumber of storks 130 150 75 15 240 245 250

Causality is a basic component of the scientific method and general learning. Establishment of caosality
mlies on a combination of axiomatic thought and empirical evidence derived from observational studies
of designed experiments. A review of key thinkers and writers in this area covers many centuries and
continents.

Sir Francis Bacon (1561- 1626) was the chief figure of the English Renaissance and an influential advocate
of “active science.” He writes in Movum Organom. (Mew Method, 16200 “. .. the rrue method of experience
... Jirst lights the candle, then by mears of the cardle shows the way, commencing a5 I does with experisnce
dily ordered and dipested, nor bungling or erraric, and from § educing arioms, ard from established axioms
ARAN NEw experimens. ..

Science should start with what Bacon called Tahles of Investigation. The Table of Presence lisis instances
in which the phenomenon being studied occurs. The Table of Absence in Proximity includes the important
negalive instances; these are the ones most like the positive instances. The Table of Comparison compares
the degrees of the phenomenon. Inierpretation begins with a brief surey which will suggest the comect
explanation of the phenomenon. Althoush this “anticipation’ resembles a hypothesis, there is in Bacon’s
discussions no clear indication that he recognized the central scientific importance of devising and testing
hypotheses. He goes on to consider ‘prerogative instances’, those most likely to facilitate interpetation, of
which he classifies 27 different types. By following the method outlined, scientific investigation is supposed
to produce, almost mechanically, a gradually increasing generality of understanding, a ‘ladder of axioms’
upon which the mind can climb up or down.

Sir Francis Bacon
1561 - 1626

...the true method of
experience. . . first lights the
candle, then by means of the
candle shows the way;
commencing as it does with
experience duly ordered and
digested, not bungling or
erratic, and from it educing
axioms, and from established
axioms again new
experiments. . 208
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