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InfoQ dimensions
o Data resolution
o Data structure
o Data integration
o Temporal relevance
o Chronology of data and goal
o Generalizability
o Operationalization
o Communication

InfoQ(f,X,g,U) = 
U( f(X|g) ) 

Information quality
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Applied statistics
is about meeting the challenge of 

solving real world problems 
with mathematical tools 
and statistical thinking

2018 ENBIS Box Medal 

2013 RSS Greenfield Medal 

My 
motto

https://blogisbis.wordpress.com/2018/11/20/videos-with-ron-kenett/
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“Statistics is important because it is conceived as

contributing to a causal understanding ...

Statistics can indicate causality even in the

absence of a mechanistic understanding.

But the traditional self-conception of statistics is

that it can rarely say anything about causality.

This is a paradox.”

Statistikk 50 År! Some remarks on causality*

Odd O. Aalen

*From a presentation celebrating 50 years to the establishment of a Masters Degree in Statistics in Norway, May 22, 2006
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Data analysis and regression : a second course 
in statistics, Addison-Wesley, 1977

“causation, though often our major concern, is 
usually not settled by statistical arguments”

Frederick Mosteller
1916-2006

John Wilder Tukey 
1915-2000

Causation:
1. Consistency
2. Responsiveness
3. A mechanism



Albert Einstein (1879-1955)

“Development of Western science is based on two

great achievements: the invention of the formal

logical system (in Euclidean geometry) by the

Greek philosophers, and the discovery of the 

possibility to find out causal relationships by

systematic experiment (during the Renaissance).”

A. Einstein, April 23, 1953
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Jean Piaget (1896 – 1980)
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Piaget's (1936) theory of cognitive development 
explains how a child constructs a mental model of 
the world. His contributions include a stage theory 
of child cognitive development, detailed 
observational studies of cognition in children, and a 
series of tests to reveal different cognitive abilities.

“The infant’s hand hits a hanging toy. The infant sees it bob about, then repeats 
the gesture several times, later applying it to other objects as well, developing a 
striking schema for striking.”

The notion of causality in the infant’s model entails a primitive cause-effect 
relationship between actions and results. For example if Z = ‘pull string hanging 
from bassinet hood’ Y = ‘toy shakes’, the infant’s model contains the causal 
relationship Z → Y .



W. Edwards Deming (1900-1993)

“Tests of variables that affect a process are useful only if they predict 
what will happen if this or that variable is increased or decreased. 

Statistical theory, as taught in the books, is valid and leads to 
operationally verifiable tests and criteria for an enumerative study. 
Not so with an analytic problem, as the conditions of the experiment 
will not be duplicated in the next  trial. 

Unfortunately, most problems in industry are analytic.”*
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*From preface to The Economic Control of  Quality of  nufactured product 
by W. Shewhart, 1931
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Jerzy Neyman (1894-1981)

Potential 
outcomes



Wright, S. (1921). Correlation and causation. Journal of Agricultural Research 20: 557-585.
Wright, S. (1934). The method of path coefficients. Annals of Mathematical Statistics 5: 161-215. 

Sewall Wright (1889-1988)

Path Analysis
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The Medical College 
Admission Test® 
(MCAT®),

Undergraduate 
Grade Point 
Average 
(UGPA)

Structural Equation Models 
)SEM(



Contingency tables
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The term contingency table was first used by Karl Pearson in "On the Theory of Contingency and Its 

Relation to Association and Normal Correlation", the Drapers' Company Research Memoirs Biometric 

Series I, published in 1904.



=
−−

−−

22 )()(

))((

yyxx

yyxx
r

Karl Pearson

1857-1936
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Contingency tables
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Contingency tables
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Contingency tables
In the chapter Contingency and correlation - the insufficiency of causation, 

(The Grammar of Science, 1911), Pearson says: "Beyond such discarded 

fundamentals as 'matter' and 'force' lies still another fetish amidst the inscrutable 

arcana of modern science, namely, the category of cause and effect."

https://pure.mpg.de/…/item_2…/component/file_2368441/content

https://pure.mpg.de/…/item_2…/component/file_2368441/content


Regression towards the mean….
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Regression 

Line

Equivalence 

Line

“It is easy to see that consequence of the co-relation must be the variation of the two organs being partly due 
to common causes” 

Sir Francis Galton (1822-1911)

Galton, F. (1886). "Regression towards mediocrity in hereditary stature". 
The Journal of the Anthropological Institute of Great Britain and Ireland 15: 246–263



1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.

Treatment to reduce high levels of a measurement
People with extreme values of the measurement, such as high blood 
pressure, may be treated to bring their values closer to the mean. If they 
are measured again we will observe that the mean of the extreme group is 
now closer to the mean of the whole population, that is, it is reduced. This 
should not be interpreted as showing the effect of the treatment.

Relating change to initial value
We may study the relation between the initial value of a measurement and 
the change in that quantity over time. In antihypertensive drug trials, for 
example, it may be postulated that the drug's effectiveness would be 
different (usually greater) for patients with more severe hypertension. This 
is a reasonable question, but, the regression towards the mean will be 
greater for the patients with the highest initial blood pressures, so that we 
would expect to observe the postulated effect even in untreated patients.

Regression towards the mean….
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Comparison of two methods of measurement
When comparing two methods of measuring the 
same quantity researchers are sometimes tempted 
to regress one method on the other. The fallacious 
argument is that if the methods agree the slope 
should be 1. Because of the effect of regression 
towards the mean we expect the slope to be less 
than 1, even if the two methods agree closely. 

1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.

Regression towards the mean….
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https://www.ncbi.nlm.nih.gov/pubmed/16921578 .

Stephen Senn (2006), Change from baseline and analysis of covariance revisited, Stat Med.; 25(24):4334-44

https://www.ncbi.nlm.nih.gov/pubmed/16921578
https://www.ncbi.nlm.nih.gov/pubmed/16921578


1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.

Representativeness….

The hot hand fallacy

• 91% of the fans believe that a player 
has a better chance of making a shot 
after having just made his last two or 
three shots than he does after having 
just missed his last two or three shots

• 84% of the fans believe that it is 
important to pass the ball to 
someone who has just made several 
(two, three, or four) shots in a row
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1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.

Framing….

Muller-Lyer optical illusion 

21



David Hume (1711-1776)

1. Analytical vs. empirical claims, 
the former are product of 
thoughts, the latter matter of 
fact

2. Causal claims are empirical

3. All empirical claims originate 
from experience.

"Thus we remember to have seen that species of object we 

call flame, and to have felt that species of sensation we 

call heat. We likewise call to mind their constant 

conjunction in all past instances. Without any farther 

ceremony, we call the one cause and the other effect, and 

infer the existence of the one from that of the other."

22
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https://en.wikipedia.org/wiki/Newton%27s_cradle
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https://en.wikipedia.org/wiki/Newton%27s_cradle
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• Objectives: Visual presentation of relationships between 
Effect and possible Causes

• How?: List of possible Causes and their Structure (Fishbone)

• Individual and Teamwork tool for improvement program 
initiation

• Possibility to select critical Causes based on Expert 
Knowledge

Cause-Effect Diagram



Cause-Effect (Ishikawa) Diagram
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Kaoru Ishikawa
1915 - 1989
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Cause-Effect Diagram Methodology

29



Round robin process
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1. You can say “pass”
2. You can build on 

other’s ideas
3. No critique allowed 

(even self)
4. Indicate where to 

note the idea on 
the fishbone 
diagram
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Why?

31
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Why? Why? Why? 

32
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Lost control of a car

33



Flat Tire

Nail

Rock

Blow-out

Glass

Slippery Road

Oil

Rain

Ice

Snow

Mechanical 
Failure

Brake failure

Broken tie rod

Stuck 
accelerator

Driver error

Reckless

Poor training

Poor reflexes

Lost control of a car – improvement priorities

34

7

4

2 5

9 participants, 2 votes each to prioritize impact, cost and feasability

Effect

Causes

Causes

Action

To minimize the effect we will 
focus on the causes in green list
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Fishbone Diagram
Scheduling 
problems at 
the dean's 
office



36

Force Field Diagram

Flow Chart

Scheduling 
meetings at 
the dean's 
office
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Introduce 
confirmation 

note

Cause and effect

From 25% to 15% 
to conference calls
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P. Spirtes, C. Glymour and R. Scheines, 
"Causality from Probability" Proceedings of 
the Conference on Advanced Computing for 
the Social Sciences, Williamsburg, Va. 1990.

Applicability of probabilistic methods to tasks requiring 
automated reasoning under uncertainty…. Application areas 
include diagnosis, forecasting, image understanding, multi-
sensor fusion, decision support systems, plan recognition, 
planning and control, speech recognition – in short, almost 
any task requiring that conclusions be drawn from uncertain 
clues and incomplete information.

https://www.sciencedirect.com/science/article/
pii/B9780080514895500059

1988

Judea Pearl (1985)

https://www.sciencedirect.com/science/article/pii/B9780080514895500059


Monday
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))P(X)P(X)P(X)P(XP(X)XP(X 543215 =1

)X|)P(X)P(XX|)P(XX|)P(XP(X)XP(X 354133215 =1

X1 X2 X3 X4 X5

𝐏 𝐗𝟏 𝐗𝟐 𝐗𝟑 𝐗𝟒 𝐗𝟓 = ?

X1 X2 X3 X4 X5 Bayesian Network

Independence

X1 X2 X3 X4 X5 Markov Model
)X|)P(XX|)P(XX|)P(XX|)P(XP(X)XP(X 4534231215 =1

41



Earthquake
Burglary

Radio Call

Five events

Alarm



Earthquake
Burglary

Radio Call

Five events

Alarm

Earthquake

Radio

Burglary

Alarm

Call



time Earthquake Burglary Radio Alarm Call

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 1

4 0 0 0 0 0

5 0 1 0 0 0

6 1 0 1 1 1

7 0 0 0 0 0

Five events, over time
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P(C,A,R,E,B) = P(B)*P(E|B)*P(R|E,B)*P(A|B,E,R)*P(C|A,R,B,E)

P(C,A,R,E,B) = P(B)*P(E)*P(R|E)*P(A|B,E)*P(C|A)

E

R

B

A

C

Earthquake (E) Burglar (B)

Radio (R)

Alarm (A)

Call (C)

A Bayesian Network

45



Earthquake

Radio

Burglary

Call

( | , ) ( | )P Alarm Earthquake Radio P Alarm Earthquake=

P
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ti
o

n
causes

effect
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What is the effect of earthquake and radio on alarm?

Alarm



Earthquake

Radio

Burglary

Alarm

Call

Radio

Call

What is causing the call?

D
ia

gn
o

st
ic

s

47

effect



The Law of Total Probability
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Law of Total Probability

P(A)  = SB P(A, B) 

= SB P(A | B) P(B)        where B is any random variable

Why is this useful?  given a joint distribution (e.g., P(A,B,C,D)) we can obtain any “marginal” probability  
e.g.,    

P(B)  = SA SC SD P(A, B, C, D) 

Less obvious: we can also compute any conditional probability of interest given a joint distribution, 

e.g.,   

P(c | b)  = Sa Sd P(a, c, d | b) 

= 1 / P(b)  Sa Sd P(a, c, d, b)

where 1 / P(b) is just a normalization constant

Thus, the joint distribution contains the information we need to compute any 
probability of interest.



The Chain Rule
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We can always write

P(a, b, c, … z)   = P(a | b, c, …. z) P(b, c, … z)

(by definition of joint probability)

Repeatedly applying this idea, we can write

P(a, b, c, … z)   = P(a | b, c, …. z) P(b | c,.. z) P(c| .. z)..P(z)

This factorization holds for any ordering of the variables.

This is the chain rule for probabilities.



Conditional Independence
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2 random variables A and B are conditionally independent given C iff

P(a, b | c) = P(a | c) P(b | c)     for all values a, b, c

More intuitive (equivalent) conditional formulation
A and B are conditionally independent given C iff

P(a | b, c) = P(a | c) OR   P(b | a, c) = P(b | c)   for all values a, b, c

Intuitive interpretation:

P(a | b, c) = P(a | c) tells us that learning about b, given that we already know c, provides no 
change in our probability for a, 

i.e., b contains no information about a beyond what c provides

Can generalize to more than 2 random variables
E.g., K different symptom variables X1, X2,…,XK , and C = disease

P(X1, X2,…,XK | C) = P P(Xi | C)

Also known as the naïve Bayes assumption



Bayesian Networks
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• A Bayesian network specifies a joint distribution in a structured form

• Represent dependence/independence via a directed graph  
• Nodes = random variables
• Edges = direct dependence

• Structure of the graph  Conditional independence relations

• Requires that graph is acyclic (no directed cycles)

• 2 components to a Bayesian Network
• The graph structure (conditional independence assumptions)
• The numerical probabilities (for each variable given its parent)

In general,

P(X1, X2,....XN) = P P(Xi | parents(Xi ) )

The full joint distribution The graph-structured approximation

Earthquake

John calls

Burglary

Alarm

Mary calls



A 3-way Bayesian Network
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A CB
Marginal Independence:
P(A,B,C) = P(A) P(B) P(C)



A 3-way Bayesian Network
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A CB
Markov dependence:
P(A,B,C) = P(C|B) P(B|A)P(A)

A chain



A 3-way Bayesian Network
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A

CB

Conditionally independent effects:
P(A,B,C) = P(B|A)P(C|A)P(A)

B and C are conditionally independent given A.

A fork



A 3-way Bayesian Network
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A B

C

Independent Causes:
P(A,B,C) = P(C|A,B)P(A)P(B)

A collider

A car's engine can fail to start  (C) due either to a dead battery  (A) or due to a blocked fuel pump (B). Ordinarily, we assume
that battery death and fuel pump blockage are independent events, because of the essential modularity of such 
automotive systems. Thus, in the absence of other information, knowing whether or not the battery is dead gives us no 
information about whether or not the fuel pump is blocked. However, if we happen to know that the car fails to start (i.e., 
we fix common effect (C), this information induces a dependency between the two causes battery death and fuel blockage. 
Thus, knowing that the car fails to start, if an inspection shows the battery to be in good health, we can conclude that the 
fuel pump must be blocked.

Battery

Fuel 
pump



Burglary example revisited
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Consider the following 5 binary variables:
B = a burglary occurs at your house

E = an earthquake occurs at your house

A = the alarm goes off

J  = John calls to report the alarm

M = Mary calls to report the alarm

What is P(B | J, M) ?  

• We can use the full joint distribution to answer this question
This requires 25 = 32 probabilities

• Alternatively, we can use prior domain knowledge to come up with a Bayesian 
Network with fewer probabilities

Earthquake

John calls

Burglary

Alarm

Mary calls



Constructing a Bayesian Network

Order the variables in terms of causality

e.g., {E, B} -> {A} -> {J, M}

P(J, M, A, E, B) =  P(J, M | A, E, B) P(A| E, B) P(E, B)

~  P(J, M | A) P(A| E, B) P(E) P(B)

~  P(J | A) P(M | A) P(A| E, B) P(E) P(B)

These causality assumptions are reflected in the graph structure of the Bayesian Network

Unconstrained joint distribution requires O(2n) probabilities. If we have a Bayesian 
network, with a maximum of k parents for any node, then we need O(n 2k) probabilities. 
Example: Full unconstrained joint distribution with n = 30  needs 109 probabilities for full 
joint distribution but binary Bayesian network with n = 30, k = 4, requires only  480 
probabilities.
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The Burglary Bayesian Network Structure
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Constructing the Bayesian Network
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P(J, M, A, E, B) = 

P(J | A)  P(M | A)  P(A | E, B)  P(E)  P(B)

There are 3 conditional probability tables (CPDs) to be determined:
P(J | A),  P(M | A),  P(A | E, B) 

Requiring 2 + 2 + 4 = 8 probabilities

And 2 marginal probabilities P(E),  P(B) -> 2 more probabilities

These probabilities come from

• Expert knowledge

• From data (relative frequency estimates)

• Or a combination of both

Earthquake

John calls

Burglary

Alarm

Mary calls



The Bayesian Network
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10 probabilities
Versus

25-1=32-1=31



The Bayesian Network for a different variable ordering
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The Bayesian Network for a different variable ordering
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Inference (Reasoning) in Bayesian Networks

Consider answering a query in a Bayesian Network
Q = set of query variables

e = evidence (set of instantiated variable-value pairs)

Inference = computation of conditional distribution P(Q|e)

Examples
P(Burglary | Alarm)

P(Earthquake | JCalls, MCalls)

P(JCalls, MCalls | Burglary, Earthquake)

We can use the structure of the Bayesian Network  to answer such queries efficiently  

Earthquake

John calls

Burglary

Alarm

Mary calls
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P(B|A)=P(A|B)P(A)/P(B)



Example
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D

A

B

C F

E

G

P(A, B, C, D, E, F, G) is modeled as P(A|B)P(C|B)P(F|E)P(G|E)P(B|D)P(E|D)P(D) 



Example
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D

A

B

c F

E

g

Say we want to compute P(A | c, g)



Example
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D

A

B

c F

E

g

Direct calculation:  P(A|c,g) = SBDEF P(A,B,D,E,F | c,g)

Complexity of the sum is O(m4)



Example
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D

A

B

c F

E

g

Reordering:

SD P(A|B) SD P(B|D,c) SE P(D|E) SF P(E,F |g)



Example
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D

A

B

c F

E

g

Reordering:

SB P(A|B) SD P(B|D,c) SE P(D|E) SF P(E,F |g)

P(E|g)



Example
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D

A

B

c F

E

g

Reordering:

Sb p(a|b) Sd p(b|d,c) Se p(d|e) p(e|g)

p(d|g)



Example
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D

A

B

c F

E

g

Reordering:

SB P(A|B) SD P(B|D,c) P(D|g)

P(B|c,g)



Example
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D

A

B

c F

E

g

Reordering:

Sb P(A|B) P(B|c,g)

P(A|c,g) Complexity is O(m), compared to O(m4)



Real-valued Variables
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Bayesian Networks can also handle Real-valued variables
• If we can assume variables are Gaussian, then the inference and theory for Bayesian 

networks is well-developed,
• E.g., conditionals of a joint Gaussian is still Gaussian, etc.

• In inference we replace sums with integrals

• For other density functions it depends…
• Can often include a univariate variable at the “edge” of a graph, e.g., a Poisson conditioned on 

day of week

• But for many variables there is little know beyond their univariate properties, e.g., 
what would be the joint distribution of a Poisson and a Gaussian? (its not defined)

• Common approaches in practice
• Put real-valued variables at “leaf nodes” (so nothing is conditioned on them)

• Assume real-valued variables are Gaussian or discrete

• Discretize real-valued variables



Take home bullets
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➢ Bayesian networks represent a joint distribution using a graph

➢ The graph encodes a set of conditional independence assumptions

➢ Answering queries (or inference or reasoning) in a Bayesian network 
amounts to efficient computation of appropriate conditional 
probabilities

➢ Probabilistic inference is intractable in the general case but can be 
carried out in linear time for Bayesian networks
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http://www.lighttwist.net/wp/uninet

https://cran.r-project.org/web/packages/bnlearn

http://www.lighttwist.net/wp/uninet
https://cran.r-project.org/web/packages/bnlearn
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MSBNx is a component-based 
Windows application for creating, 
assessing, and evaluating Bayesian 
Networks, created at Microsoft 
Research

www.bayesfusion.com

Decision Systems Laboratory. 
Department of Information 
Science and Telecommunications 
and the Intelligent Systems 
Program at the University of 
Pittsburgh.

https://www.microsoft.com/en-
us/download/confirmation.aspx?id=52299

https://msbnx.azurewebsites.net/msbnx/what_is_msbnx.htm

http://www.bayesfusion.com/
https://www.microsoft.com/en-us/download/confirmation.aspx?id=52299
https://msbnx.azurewebsites.net/msbnx/what_is_msbnx.htm


The basic building block of the system is a one hour model of 
the intake and utilization of food, blood glucose and insulin. 
The nodes BG and CHO acts as status variables denoting 
respectively the glucose in the blood stream and the glucose 
reservoir in the stomach. Intermediate nodes are primarily 
describing processes that utilizes the glucose
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20% BOT12
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13% BOT12
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Chatillon, G. (1984) The Balloon Rules for a Rough Estimate of the 
Correlation Coefficient, The American Statistician,  38(1), 58-60.

But: Correlation is not causation…
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𝑆𝑞𝑟{[1 −
7.5

8.75

2

}

= 0.5

h

H

Correlation is not causation…
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Scatterplot of Y vs x
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Correlation is not causation…

Y = ( 5 X - X2 ) / ( 1 - 2 X -2 X2 )
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Scatterplot of Y vs x
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No 
correlation 
does not 
imply no 
causation

Correlation is not causation…

Y = ( 5 X - X2 ) / ( 1 - 2 X -2 X2 )



The population of Oldenburg in Germany and the 
number of observed storks in 1930-1936*

year 1930 1931 1932 1933 1934 1935 1936

Population 

in 

thousands

50 52 64 67 69 73 76

Number of 

storks
130 150 175 190 240 245 250

* Box, Hunter and Hunter, Statistics for Experimenters: An Introduction to 
Design, Data Analysis, and Model Building, J. Wiley, 1978 
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Correlation is not causation…

No
correlation 
does not 
imply no
causation
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Spurious correlation
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Correlation 
does not 

imply 
causation

1. Base rate neglect, 

2. Overconfidence,

3. Anchoring,

4. Representativeness,

5. Availability, 

6. Regression towards 

the mean, 

7. Spurious correlation, 
8. Framing.
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Spurious correlation
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Spurious correlation
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https://webpower.psychstat.org/models/cor01/

https://cran.r-project.org/web/packages/WebPower/index.html
http://www.divms.uiowa.edu/~rlenth/Power/

How many 
observations 

are needed to 
determine 
significant 

correlation?

https://webpower.psychstat.org/models/cor01/
https://cran.r-project.org/web/packages/WebPower/index.html
http://www.divms.uiowa.edu/~rlenth/Power/
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On spurious 
correlations

http://www.tylervigen.com/spurious-correlations

http://www.tylervigen.com/spurious-correlations
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On spurious 
correlations

Causality 
effects?
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On spurious 
correlations

Pearson, K. (1897) Mathematical 
contributions to the theory of 
evolution. On a form of spurious 
correlation which may arise when 
indices are used in the measurement 
of organs. Proceedings of the
Royal Society of London, LX, 489-502.

SD={xR+
D :  x1+x2+···+xD = k}

subcompositional coherence: 
Using full composition or 
using subcomposition, one 
should make the same 
inference about relations 
within the common parts. 

The correlation coefficient is 
not subcompositionaly
coherent.

Compositional data
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On spurious 
correlations

Full composition Subcomposition

SD={xR+
D :  x1+x2+···+xD = k} Compositional data
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1. Background on causality in science and statistics

2. Fishbone cause and effect diagrams

3. Bayesian networks

4. Randomization in experimental designs

5. Propensity scores in observational studies

6. Counterfactuals and do calculus

7. Personalized medicine, condition based maintenance and Industry 4.0

8. Future research areas
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“No aphorism is more frequently repeated in connection with field trials, than 
that we must ask Nature few questions, or, ideally, one question, at a time. 
The writer is convinced that this view is wholly mistaken. Nature, he suggests, 
will best respond to a logical and carefully thought out questionnaire. A 
factorial design allows the effect of several factors and interactions between 
them, to be determined with the same number of trials as are necessary to 
determine any one of the effects by itself with the same degree of accuracy.” 

R.A. Fisher (1926). The arrangement of field experiments, Journal of the Ministry of Agriculture of Great 
Britain 33, 503–513.
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An implicit definition of causal effects by Fisher is the following:

If we say, ‘This boy has grown tall because he has been well fed,’ we are 
not merely tracing out cause and effect in an individual instance; we are 
suggesting that he might quite probably have been worse fed, and that in 
this case he would have been shorter. We are, in fact, suggesting that 
existing differences of nutrition can account for differences of stature 
comparable to the standard deviation of stature. Now this is just what is 
meant when we speak of nutrition as a cause of variability; we thereby 
mean that in a population absolutely uniform in regard to other causes, 
such as breeding and exercise, existing differences of nutrition would 
produce a certain variability—in fact, that a certain percentage of the 
variance must be ascribed to nutrition.

Fisher RA (1919) The causes of human variability. The Eugenics Review;10(4): 213-220.
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In the 1920s RA Fisher presented randomization as an essential ingredient 
of his approach to the design and analysis of experiments, validating 
significance tests. In its absence, the experimenter had to rely on his 
judgement that the effects of biases could be discounted. 

Twenty years later, Bradford Hill promulgated the random assignment of 
treatments in clinical trials as the only means of avoiding systematic bias 
between the characteristics of patients assigned to different treatments. 
The two approaches were complementary, Fisher appealing to statistical 
theory, Hill to practical needs. The two men remained on good terms 
throughout most of their careers.

Peter Armitage (2003) Fisher, Bradford Hill, and randomization, International Journal of Epidemiology 32:925–928
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Strength (effect size): A small association does not mean that there is not a causal effect, though the larger the 
association, the more likely that it is causal.
Consistency (reproducibility): Consistent findings observed by different persons in different places with different 
samples strengthens the likelihood of an effect.
Specificity: Causation is likely if there is a very specific population at a specific site and disease with no other likely 
explanation. The more specific an association between a factor and an effect is, the bigger the probability of a causal 
relationship.
Temporality: The effect has to occur after the cause (and if there is an expected delay between the cause and 
expected effect, then the effect must occur after that delay).
Biological gradient: Greater exposure should generally lead to greater incidence of the effect. However, in some 
cases, the mere presence of the factor can trigger the effect. In other cases, an inverse proportion is observed: 
greater exposure leads to lower incidence.[
Plausibility: A plausible mechanism between cause and effect is helpful (but Hill noted that knowledge of the 
mechanism is limited by current knowledge).
Coherence: Coherence between epidemiological and laboratory findings increases the likelihood of an effect. 
However, Hill noted that "... lack of such [laboratory] evidence cannot nullify the epidemiological effect on 
associations".
Experiment: "Occasionally it is possible to appeal to experimental evidence".
Analogy: The effect of similar factors may be considered.

Bradford Hill, A. (1953). Observation and experiment. New England Journal of Medicine 248:995-1001
Bradford Hill, A.  (1965). The environment and disease: association or causation? Proceedings of the Royal 
Society of Medicine 58:295-300
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Richard Doll
(1912 – 2005) 

Austin Bradford Hill
(1897-1991

Br Med J. 1950 Sep 30; 2(4682): 739–748.

Smoking and Carcinoma of the Lung

Richard Doll and A. Bradford Hill



Cornfield Inequality

R0 is the observed relative risk between an exposed and unexposed 
group, which could be explained by an unmeasured confounder, U. 
RO is no greater than the ratio of the prevalence of U in the exposed to 
that in the unexposed population. RO ≤ RU , where RU is the ratio of risk 
in those with U compared to those without U. 

Cornfield J (1956). A statistical problem arising from retrospective studies. Proceedings 3rd 
Berkeley Symposium on Mathematical Statistics, 4:135–48.

Lung cancer in asbestos workers: relative risk of asbestos exposed workers dying from lung 
cancer is 6.8 times their expected number in general population. 

60% of all males smoke, 80% of males in asbestos-related occupations. The prevalence ratio, 
0.8/0.6 = 1.33, is much less than RO = 6.8, so Cornfield’s inequality implies that smoking cannot 
explain the entire association between asbestos and lung cancer. 117



“The consistency of all the epidemiologic and experimental 
evidence also supports the conclusion of a causal relationship with 
cigarette smoking…results in animals are fully consistent with the 
epidemiologic findings in man.

When a demonstrable parallelism exists between epidemiologic 
data and laboratory findings, greater significance accrues to both.”

Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL (1954)  Smoking 
and lung cancer: recent evidence and a discussion of some questions. J Natl Cancer Inst 1954;22:

Cornfield Inequality

118
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Scoping

Initial 
assessment

Screening

Fractional
designs

Robustness

Robust
designs

Optimizing

Response
surfaces

Gain Knowledge Build
Confidence

Design of Experiments Strategy

Replicates and pseudo-replicates (Hurlbert): 
https://web.ma.utexas.edu/users/mks/statmistakes/pseudorep.html

https://web.ma.utexas.edu/users/mks/statmistakes/pseudorep.html
https://web.ma.utexas.edu/users/mks/statmistakes/pseudorep.html
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Before you leave these portals

To meet less fortunate mortals

There's just one final message

I would give to you

You all have learned reliance

On the sacred teachings of science

So I hope, through life you never will decline

In spite of philistine

Defiance

To do what all good scientists do

Experiment

Make it your motto day and night

Experiment

And it will lead you to the light

The apple on the top of the tree

Is never too high to achieve

So take an example from Eve

Experiment

Be curious

Though interfering friends may frown,

Get furious

At each attempt to hold you down

If this advice you'll only employ

The future can offer you infinite joy

And merriment

Experiment

And you'll see Mabel Mercer sings Cole Porter
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When asked: How you 
would handle a random 

order with a 
perceptible pattern? 

Fisher responded that 
he did not understand 
the question: “I would 

of course rerandomize”

D.R. Cox (personal 
communication, 

26/2/2019)
Don Rubin, Annual meeting of Israeli Statistical Association,31/5/ 2018



On randomization and 
re-randomization
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A treatment is applied 
as T1 or T2.

What is the treatment effect?
Is the effect at T2 greater 

than the effect at T1?

0.4

0.3

0.2

0.1

0.0

X

D
e
n
si

ty

3.35897

0.006051

0

Distribution Plot
T, df=7
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Following this 
introduction,
Cox discusses three 
approaches marked 
below in red, green 
and blue.

Further discussion is 
marked in yellow.
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Split plot design

https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-
Split-plot-experiments/ba-p30716

https://community.jmp.com/t5/JMP-Blog/The-QbD-Column-Split-plot-experiments/ba-p/30716
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Judea Pearl 

2011 Turing Award for fundamental 
contributions to artificial intelligence 
through the development of a 
calculus for probabilistic and causal 
reasoning

Don Rubin



Causal Analysis

For causal questions, we need to infer aspects of 
the data generation process. 

We need to be able to deduce:

- the likelihood of events under static conditions, (as 
in standard statistical analysis) and also 

- the dynamics of events under changing conditions.
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Causal Analysis

“dynamics of events under changing conditions” includes:  

- Predicting the effects of interventions.

- Predicting the effects of spontaneous changes.

- Identifying causes of reported events.
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Population & Outcome Variable

Define the population by U. 
Each unit in U is denoted by u. 

The outcome of interest is Y.
Also called the response variable.

For each u  U, 
there is an associated value Y(u).

140



Causes/Treatment

For simplicity, we assume that there are just two 
possible  states: 

- Unit u is exposed to treatment/condition and 
- Unit u is exposed to comparison.

Causes are those things that could be treatments 
or conditions in hypothetical experiments.
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The Treatment/Condition Variable
Let D be a variable that indicates the state to 
which each unit in U is exposed.

Where does D come from?
- In a controlled study: 
constructed by the experimenter.
- In an uncontrolled study: 
determined by factors beyond the experimenter’s control.

D = 
1 If unit u is exposed to treatment/condition

0 If unit u is exposed to comparison

142



Linking Y and D

Thus, we need two response variables:

Y1(u) is the outcome if unit u is exposed to treatment.

Y0(u) is the outcome if unit u is exposed to comparison.

Y = response variable

D = treatment/condition variable

The response Y is potentially affected by 
whether u receives treatment or not.

143

Potential 
outcomes



The Effect of Treatment/Condition on Outcome

144

Response variable Y

Treatment variable D

D = 
1 If unit u is exposed to treatment

0 If unit u is exposed to comparison

Y1(u) is the outcome if unit u is exposed to treatment

is the outcome if unit u is exposed to comparisonY0(u)

δu = Y1 (u) - Y0 (u)



Counterfactuals
For any unit u, treatment causes the effect

δu = Y1 (u) - Y0 (u)

Fundamental problem of causal inference

For a given unit u, we observe either Y1 (u) or Y0 (u), it 
is impossible to observe the effect of treatment on u
by itself!

We do not observe the counterfactual

If we give u treatment, then we cannot observe what 
would have happened to u in the absence of treatment.
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Le nez de Cléopâtre: s’il eut été plus court, toute la face 

de la terre aurait change.                             Pascal (1669) 

The propensity score (PS) is 

the probability of treatment 

assignment conditional on 

observed baseline 

characteristics. The propensity 

score allows one to design and 

analyze an observational 

(nonrandomized) study so that it 

mimics some of the particular 

characteristics of a randomized 

controlled trial. 

Warning: PS for an incomplete 

blocks design is identical to a 

completely randomized design
https://onlinelibrary.wiley.com/d
oi/10.1002/sim.3133

https://onlinelibrary.wiley.com/doi/10.1002/sim.3133
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Causality

Designed 
experiments

Observational 
studies
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Seeing

Doing

Imagining

1

2

3



Graph Terminology
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• Nodes – vertices on a graph (Xi )

• Edge – line or arrow connecting two nodes

• Adjacent – two variables connected by an edge

• Path – sequence of edges (p)

• Directed Path – arrows at the end of every edge

• Acyclic – No loops

• DAG – directed acyclic graph (G)

• Parents, children, descendants, etc.



A Structural Causal Network
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Q1: If the season is dry, and the pavement is slippery, did it rain?

A1: Unlikely, it is more likely the sprinkler was ON.

Q2: But what if we see that the sprinkler is off?

A2: Then it is more likely that it rained

Q3: Do you mean that if we actually turn the sprinkler
off, the rain will be more likely?
A3: No, the likelihood of rain would remain the same



From Bayesian Networks to Causal Graphs

A DAG G is a causal graph or structural causal network (SCN) if, 

for each node Xi ,with parents PAi, 

we have Xi =fi (PAi ,ei), 

ei independent random variables 

and fi a deterministic function.
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Z

X Y
Walking Health

Age



A Structural Causal Network
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Z

X Y

Z is a confounder 
of the causal 
relationship 
between X and Y

Walking Health

Age

Is walking 
good for 
your 
health?
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Fertilizer

Seed fertility

Texture Drainage Micro flora
Other

Yield

What we have
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Fertilizer = 1

Seed fertility

Texture Drainage Micro flora
Other

Yield

What we want
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Fertilizer = 1

Seed fertility

Texture Drainage Micro flora
Other

Random 
card

Yield

What we get 
with 

randomizaton

https://foreignpolicy.com/2019/10/22/economics-development-rcts-esther-duflo-abhijit-banerjee-michael-kremer-nobel/

Abhijit Banerjee and Esther Duflo: The Nobel couple fighting poverty

The team pioneered “randomized controlled trials”, or RCTs, in economics. https://www.bbc.com/news/world-asia-india-50048519

https://foreignpolicy.com/2019/10/22/economics-development-rcts-esther-duflo-abhijit-banerjee-michael-kremer-nobel/
https://www.bbc.com/news/world-asia-india-50048519


Example 1
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The M-bias

Back door path 
blocked by Z so that 
there is no need to 
control for anything



• The back-door criterion suggests that the effect of X and Y is not 
confounded by A, Z or E.

• The only arrow into X is the one traversing (X, E, Z, A, Y) and this 
path contains two arrows pointing head-to-head at Z.
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The M-bias



• Statistically adjusting for Z, when estimating the effect of X on 
Y, will give a biased effect estimate.

• Thus, one should not necessarily “control” for every variable 
that is related to both the disease and the treatment/exposure 
of interest.
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The M-bias

Consequences of Adjusting for Z



Example 2

What variables 
one needs to 
adjust to get 
unconfounded 
effect of Xi (risk 
variable) on Xj

(outcome).
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The expanded M-bias



In this case, one could adjust for {X3,X4} or {X4,X5} 
but not just for {X4}.
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The expanded M-bias



Rules to control information from A to C

1. In a chain,  A -> B -> C, controlling for B prevents information 
about A, through B, from getting to C

2. In a fork, A <- B -> C, controlling for B prevents information 
about A, through B, from getting to C

3. In a collider, A -> B <- C, the opposite holds. A and C start 
independent so that information about A tells nothing about C, 
but, controlling for B, causes information, through B, to flow

4. Controlling for descendants is partially controlling for the 
variable itself. Controlling for a descendant of a collider partially 
opens the information flow.
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d (directional) - separation vs. d - connected

A path, p, is said to be d-separated by a set of nodes Z if and only if:

1. p contains a fork i m j or a chain  i m j such that the middle 
node m is in Z, or

2. p contains an inverted fork (or collider) i m j such that the middle 
node m is not in Z and such that no descendent of m is in Z.

A set Z is said to d-separate X from Y if and only if Z blocks every path 
from a node in X to a node in Y.

A pair of d-separated nodes are independent.
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Example of d-separated paths

X={X2} and Y={X3} are d-separated by Z={X1}.

The path X2 – X4 – X3 is blocked by collider X4

However, X and Y are not d-separated by Z’={X1, 

X5} since X5 is a descendant of the collider, X4. 

So, knowing X5 causes X2 and X3 to be dependent
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Interventions in Causal Graphs

The causal effect of a variable (node) Xi can be defined as how the 
outcome, Y,  changes when this variable is set to some value, thereby 
breaking the influence of predecessors.

This basic insight translates into the G-estimation algorithm of Robins 
(1986).

After intervening in the graph, by setting Xi = xi’, then the joint 
distribution of the data becomes:
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When we intervene on a variable in a model, 
we fix its value and change the system. Values 

of other variables often change as a result.
When we condition on a variable, we change 

nothing only narrow focus on a subset of cases.
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Do calculus

𝑃(𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥) = 𝑆𝑢𝑚𝑃 𝑌 = 𝑦 𝑋 = 𝑥, 𝑍 = 𝑧 𝑃(𝑍 = 𝑧)Adjustment formula

ACE=𝑃(𝑌=1|𝑑𝑜(𝑋=1))-𝑃(𝑌=1|𝑑𝑜(𝑋=0)) 
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Do calculus

𝑃(𝑌=1|𝑑𝑜(𝑋=1))=P(Y=1|X=1, Z=1)P(Z=1)+P(Y=1|X=1, Z=0)P(Z=0)

𝑃(𝑌=1|𝑑𝑜(𝑋=1))=(0.93(87+270))/700 + (0.73(263+80)/700) = 0.832

𝑃(𝑌=1|𝑑𝑜(𝑋=0))=(0.87(87+270))/700 + (0.69(263+80)/700) = 0.7818

ACE=𝑃(𝑌=1|𝑑𝑜(𝑋=1))-𝑃(𝑌=1|𝑑𝑜(𝑋=0))= 0.832 - 0.7818 = 0.0502

Drug (X=1) No Drug (X=0)

Men (Z=0) 81/87 (93%) 234/270 (87%)

Women (Z=1) 192/263 (73%) 55/80 (69%)

Total 273/350 (78%) 289/350 (83%)

Recovery rates with and without drug [(Y=1)/n]

X=x Y

Z
Sex

Drug

Recovery

𝑃(𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥) = 𝑆𝑢𝑚𝑃 𝑌 = 𝑦 𝑋 = 𝑥, 𝑍 = 𝑧 𝑃(𝑍 = 𝑧)Adjustment formula

Recovery 
rate due 
to drug

ACE=𝑃(𝑌=1|𝑑𝑜(𝑋=1))-𝑃(𝑌=1|𝑑𝑜(𝑋=0)) 
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Do calculus

The Causal Effect Rule

Given a graph G in which a set of variables PA are designed as 
the parents of X, the causal effect of X on Y is given by

Where z ranges over all the combinations of values that the 
variable PA can take.

𝑃(𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = 𝑆𝑢𝑚𝑃 𝑌 = 𝑦 𝑋 = 𝑥, 𝑃𝐴 = 𝑧 𝑃(𝑃𝐴 = 𝑧)

𝑃(𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = 𝑆𝑢𝑚𝑃(𝑋 = 𝑥, 𝑌 = 𝑦, 𝑃𝐴 = 𝑧)/𝑃(𝑋 = 𝑥|𝑃𝐴 = 𝑧)

𝑃(𝑋 = 𝑥|𝑃𝐴 = 𝑧)Propensity score =

𝑃(𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥) = 𝑆𝑢𝑚𝑃 𝑌 = 𝑦 𝑋 = 𝑥, 𝑍 = 𝑧 𝑃(𝑍 = 𝑧)Adjustment formula

ACE=𝑃(𝑌=1|𝑑𝑜(𝑋=1))-𝑃(𝑌=1|𝑑𝑜(𝑋=0)) 



Lord’s Paradox and Causal Graphs

YB – YA = XB – XA = D.

(YB – XB) – (YA– XA) = ( YB – YA) – (XB – XA ) = D – D = 0.

( YB – YA) – r(XB – XA ) = D – rD = (1 – r)D,

Who is right?

Is there an effect?

“A large university is interested in investigating the effects on the students of the diet provided in the university dining halls. 
Various types of data are gathered. In particular, the sex and weight of each student at the time of his arrival in September and 
his weight the following June are recorded.” (Lord, 1967). Lord posits two statisticians who use different but respected 
statistical methods to reach opposite conclusions about the effects of the diet provided in the university dining halls on 
students' weights.

One statistician does not adjust for initial weight or sex; using analysis of variance (ANOVA), 
and treating gain scores (June - September) as the outcome, he finds no significant 
difference between dining halls and states that there is no evidence of any effect of diet on 
student weights. The second statistician adjusts for initial weight; using analysis of 
covariance (ANCOVA), and treating June weights as the outcome, he finds a significant 
difference between the two dining halls.

Hall 1

Hall 2

In neither halls students gain weight but in each stratum Hall 2 tend to gain more weight than Hall 1
168



Lord’s Paradox and Causal Graphs (Original)
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Wi

S Wf

Consult the story behind the data.
Account for S.  The variable of 
interest is G.

G = Wf – Wi

No backdoor between S and G
need to be blocked so the 
aggregated data provides the 
answer (statistician one).

Wi is a mediating variable of S and 
G, and controlling for Wi provides 
the direct effect of S on G.

Sex

Final weight

Initial weight

Girls

Boys

G

Wi=Wf

Sex strongly affects the 
percentages of students in 
each stratum

Gain

-1

+1

What is 
the effect 
of diets 
on Boys 
and Girls



Lord’s Paradox and Causal Graphs (Adapted)
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Wi

D Wf

Consider another story behind the 
data. Account for Hall (Diet). 

Again, the variable of interest is G.
Wi is a confounder for D and Wf. 
Controlling for Wi de-confounds D 
and Wf, as well as D and G.

Diet

Final weight

Initial weight

Hall 1

Hall 2

G

Wi=Wf

The Hall very strongly 
affects the percentages of 
students in each stratum

Gain

What is the 
effect (G) 

on students 
of diet in 

Hall  1 and  
Hall 2 

Association:
Switching from Diet A to Diet B has no effect
(YB – XB) – (YA– XA) = ( YB – YA) – (XB – XA ) = D – D = 0.

Causation:
Comparing gains in Diet A versus Diet B, for students with same intial weight, shows higher gain with Diet B

A B
P(G|do(Diet) = σ {Wi} P(G|Diet, Wi) P(Wi)

P(Gain|Diet=A) = P(Gain|Diet=B) ≠
P(Gain|do(Diet=A)) = P(Gain|do(Diet=B))

http://causality.cs.ucla.edu/blog/index.php/2019/08/13/lords-paradox-the-power-of-causal-thinking/

http://causality.cs.ucla.edu/blog/index.php/2019/08/13/lords-paradox-the-power-of-causal-thinking/


Lord’s Paradox and Causal Graphs
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Consider another story behind the 
data. Account for Hall (Diet).

Again, the variable of interest is G.
Wi is a confounder for D and Wf. 
Controlling for Wi de-confounds D 
and Wf, as well as D and G.

Association:
Switching from Diet A to Diet B has no effect
(YB – XB) – (YA– XA) = ( YB – YA) – (XB – XA ) = D – D = 0.

Causation:
Comparing gains in Diet A versus Diet B, for students with same intial weight, shows higher gain with Diet B

Back door adjustment formula

Average causal effect of an interventions 
by first estimating its effect at each level 

of the de-confounder.

Then, compute a weighted average of 
those levels, where each level is 

weighted according to its prevalence in 
the population.

https://errorstatistics.com/2019/08/02/s-senn-red-herrings-and-the-art-of-cause-fishing-lords-paradox-revisited-guest-post/

https://errorstatistics.com/2018/11/11/stephen-senn-rothamsted-statistics-meets-lords-paradox-guest-post/amp/

https://errorstatistics.com/2019/08/02/s-senn-red-herrings-and-the-art-of-cause-fishing-lords-paradox-revisited-guest-post/
https://errorstatistics.com/2018/11/11/stephen-senn-rothamsted-statistics-meets-lords-paradox-guest-post/amp/
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Definition: A structural causal model is a 4-tuple
V, U, F, P(u), where
• V = {V1,...,Vn} are endogeneus variables
• U = {U1,...,Um} are background variables
• F = {f1,..., fn} are functions determining V,

vi = fi(v, u)

• P(u) is a distribution over U
P(u) and F induce a distribution P(v) over observable 
variables

Y
uxy ++=e.g.,

A Structural Causal Model
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Data shows:  = 0.7,  = 0.5, g = 0.4
A student named Joe, measured X=0.5, Z=1, Y=1.5
Q1: What would Joe’s score be, had he doubled his study time?

X Y

 g
3

2

1

Z

X Y7.0=

5.0= 4.0=g

3

2

1

Z

Score

TimeStudy 

Treatment 

=

=

=

Y

Z

X

3

2

1

+g+=

+=

=

zxy

xz

x

A Structural Causal Network
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0.2=Z

Y 9.1=

9.1)(2 == uYz

Q1: What would Joe’s score be had he doubled his study time?
Answer: Joe’s score would be 1.9
Or,
In counterfactual notation:

7.0=

75.0=

1 5.0=
4.0=g

75.0=3

5.0=X

2

X Y7.0=

5.0= 4.0=g

3

2

1

Z

Y7.0=

5.0=

75.0=

1

0.1=

5.0=

Z

4.0=g
75.0=3

5.0=X 5.1=

2

“do” calculus example
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25.1=Z

1=X 0= 25.1=

5.0=

Y 5.1=

0.1=Z

5.0=X Y 25.2=

1 5.0=

7.0=

4.0=g
75.0=3

75.0=2

Q2: What would Joe’s score be, had the treatment been 0, and 
had he studied at whatever level he would have studied had 
the treatment been 1?

X Y7.0=

5.0= 4.0=g

3

2

1

Z 0.2=Z

Y 9.1=7.0=

75.0=

1 5.0=
4.0=g

75.0=3

5.0=X

2

Y7.0=

5.0=

75.0=

1

0.1=

5.0=

Z

4.0=g
75.0=3

5.0=X 5.1=

2

7.0=

1 5.0=

25.1=Z

4.0=g
75.0=3

X Y

75.0=2

1= 25.2=

5.0=
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Internal and 
external validity
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Generalizability and 
transportability



178

New York

Survey data 

Resembling target

Los Angeles

Survey data  

Youngish 

population

San Francisco

High post-treatment 

blood pressure

Boston

Age not recorded

Mostly successful 

lawyers

Texas

Mostly  Spanish 

subjects

High attrition

Utah

RCT, paid 

volunteers, 

unemployed

Toronto

Randomized trial

College students

Wyoming

RCT, young 

athletes

Query of interest: Q = P*(y | do(x))             

Target population 

Arkansas

Survey data 

available



Experimental study in LA

Measured:

Needed:

)),(|(

),,(

zxdoyP

zyxP

?  =))(|(* xdoyP

Observational study in NYC
Measured:

),,(* zyxP
)()(* zPzP 

X 

(Intervention)

Y

(Outcome)

X

(Observation)

Y

(Outcome)

=
z

zPzxdoyP )(*)),(|(

Transport Formula (calibration):

 *

*),,( PPPF do

Z  (Age) Z  (Age)

https://cran.r-project.org/web/packages/causaleffect/causaleffect.pdf

Pearl, J. 2009. Causality: Models, Reasoning, and Inference. Cambridge University Press 179

https://cran.r-project.org/web/packages/causaleffect/causaleffect.pdf
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JASA, 2000, 95(450), pp. 441-448

Dimensions for assessing 
counterfactuals



2012
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Partial Dependence Plot and Causality

183

J. H. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 29(5):1189{1232, 2001.

PDP is the same as Pearl's back-door 
adjustment formula!

A set of variables XC satisfies the back-door criterion 
with respect to XS and Y if
1) No node in XC is a descendant of XS, and
2) XC blocks (d-separates) every back-door path 
between XS and Y (contains an arrow into XS).

XS = X1,

XC = {X3}, {X4} or {X3; X4}.



Agenda
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1. Background on causality in science and statistics

2. Fishbone cause and effect diagrams

3. Bayesian networks

4. Randomization in experimental designs

5. Propensity scores in observational studies

6. Counterfactuals and do calculus

7. Personalized medicine, condition based maintenance and Industry 4.0

8. Future research areas



Data 

Quality

Information 

Quality

Analysis 

Quality

1.Data resolution

2.Data structure

3.Data integration

4.Temporal relevance

5.Chronology of data and goal

6.Generalizability

7.Operationalization 

8.Communication

Goals

Analytic 
Space

Domain 
Space

Insights

How

Analysis goal

g X
Available data 

f
Data analysis

method 

Utility measure

U

What

InfoQ(U,f,X,g) = U(f(X|g)) 

185



Generalizability

Conservation of Mass
Conservation of Energy
Conservation of Momentum
Newton Laws
Principle of least action
Laws of thermodynamics
Maxwell's equations
….. 

Intuition

186

Statistical inference
Regression models
Predictive analytics
….. 
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https://www.amazon.co.uk/Real-Work-Data-Science-
organizations/dp/1119570700/ref=sr_1_7?s=books&ie=UTF8&q
id=1550994497&sr=1-7&refinements=p_27%3ARon+S.+Kenett

1. “A higher calling.”   

2. “The difference between a good data scientist and a great one.”

3. “Learn the business.”   

4. “Understand the real problem.” 

5. “Get out there.”  

6. “Sorry, but you can’t trust the data.  Deal with it.”

7. “Make it easy for people to understand your insights.”  

8. “When the data leaves off and your intuition takes over.”

9. “Take accountability for results.” 

10. “What does it mean to be ‘data-driven,’”

11. “Rooting out bias in decision-making.”  

12. “Teach, teach, teach.”      

13. “Evaluating data science outputs more formally”

14. “Educating senior management.”  

15. “Putting data science, and data scientists, in the right spots.” 

16. “Moving up the analytics maturity ladder.”

17. “The industrial revolutions and data science.”

18. Epilogue

https://www.amazon.co.uk/Real-Work-Data-Science-organizations/dp/1119570700/ref=sr_1_7?s=books&ie=UTF8&qid=1550994497&sr=1-7&refinements=p_27:Ron+S.+Kenett


Level 5: Learning and discovery - This is where attention is paid to 

information quality. Data from different sources is integrated. Chronology 

of Data and Goal and Generalization is a serious consideration in 

designing analytic platforms. Leverage causality models.

Level 4: Quality by Design - Experimental thinking is introduced. The data 

scientist suggests experiments, like A/B testing, to help determine which 

website is better. Develop causality analysis.

Level 3: Process focus - Probability distributions are part of the game. 

The idea that changes are statistically significant, or not, is introduced. 

Some attention is given to model fitting. Introduce causality analysis.

Level 2: Descriptive statistics level – Management asks to see 

histograms, bar charts and averages. Models are not used, data is 

analyzed in rather basic ways.

Level 1: Random demand for reports driven by firefighting - New reports 

address questions such as: How many components of type X did we 

replace last month or how many people in region Y applied for a loan?
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Sensor 
technology

Condition Based Maintenance (CBM)
Health and Usage Monitoring Systems (HUMS) 
Prognostics and Health Management (PHM)

Analytics• Monitoring

• Diagnostics
• Prognostics
• Prescriptive

Causality
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Material Controls

Factory Execution 

Factory Productivity
Planning and Simulation

Equipment Productivity
Equipment Controls

WIP, WORKFLOW, EXPERIMENTS,

CAPACITY, STARTS, LAYOUTS, MULTI-FACTORY

PRODUCT DELIVERY TO EQUIPMENT
AUTONOMOUS ROBOTS

PREVENTIVE MAINTENANCE, EQUIPMENT AUTOMATION

DATA COLLECTION, BIG DATA

DETECTION: SPC

DISPATCHING, SCHEDULING, REPORTING, 
Prediction

The Industry 4.0 Factory

• Monitoring

• Diagnostics
• Prognostics
• Prescriptive



191



192

• Monitoring

• Diagnostics
• Prognostics
• Prescriptive



193

Monitoring and 
Diagnostics
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Prognostic analysis
Casual 
BP test 
versus 
Holter



Agenda
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1. Background on causality in science and statistics

2. Fishbone cause and effect diagrams

3. Bayesian networks

4. Randomization in experimental designs

5. Propensity scores in observational studies

6. Counterfactuals and do calculus

7. Personalized medicine, condition based maintenance and Industry 4.0

8. Future research areas
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- Small volume – low statistical power
- Limited variety – Biased estimates
- Low velocity – estimates may not be 

valid in the future 

- High volume – high statistical 
significance - small p value

- High variety – small bias
- High velocity – dynamic update of 

estimates

Information 
Quality (InfoQ)



1. Data resolution

2. Data structure

3. Data integration

4. Temporal relevance

5. Chronology of data and goal

6. Generalizability

7. Operationalization 

8. Communication

How

Analysis goal

g X
Available data 

f
Data analysis

method 

Utility measure

U

What

InfoQ(f,X,g) = U(f(X|g)) 

# Dimension Note Value Index

1 Data resolution 5 1.0000

2 Data structure 4 0.7500

3 Data integration 5 1.0000

4 Temporal relevance 5 1.0000

5 Generalizability 3 0.5000

6 Chronology of data and goal 5 1.0000

7 Concept operationalization 2 0.2500

8 Communication 3 0.5000

InfoQ Score = 0.68

InfoQ=68%

Information Quality (InfoQ)

https://community.jmp.com/t5/JMP-Add-
Ins/Calculate-InfoQ-score-with-JMP/ta-p/34898

https://community.jmp.com/t5/JMP-Add-Ins/Calculate-InfoQ-score-with-JMP/ta-p/34898
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Volume

V
ar

ie
ty

Big data

Data integration

Operationalization of findings



An historical perspective

Product
Quality

Process
Quality

Service
Quality

Management
Quality

Information
Quality

Design
Quality

1 2 3 4 5 6

1800 1900 1950 1980 20101960

Eli Whitney
(1765 – 1825)

Walter Shewhart
(1891 – 1961)

George Box 
(1919 – 2013)

Edwards Deming
(1900 – 1993)

Joseph Juran
(1904 - 2008)

Genichi Taguchi
(1924 – 2012)

199

• Monitoring

• Diagnostics
• Prognostics
• Prescriptive
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Counterfactuals
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https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3033588

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3033588
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Causal 
interpretation



From association to causation
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A B C D E F Y #repeats

1 1 1 1 1 1 1 14

1 0 1 1 1 1 1 8

1 1 0 1 0 1 1 15

0 1 1 1 1 1 1 8

0 1 0 0 0 0 0 5

0 0 0 0 1 0 1 6

1 0 0 0 0 1 0 4

1 0 1 1 1 0 0 3

0 1 0 1 1 0 0 3

0 1 0 0 1 0 0 5

Discover causal rules from large databases of binary variables

A → Y

C → Y

BF → Y

DE → Y
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Discover causal association rules from large databases of 

binary variables

From association to causation

A B C D E F Y

1 1 1 1 1 1 1

1 0 1 1 1 1 1

1 1 0 1 0 1 1

0 1 1 1 1 1 1

0 1 0 0 0 0 0

0 0 0 0 1 0 1

1 0 0 0 0 1 0

1 0 1 1 1 0 0

0 1 0 1 1 0 0

0 1 0 0 1 0 0

A → Y

A B C D E F Y

1 1 1 1 1 1 1

1 0 1 0 1 1 1

1 1 0 1 0 1 0

1 0 1 0 1 0 0

0 1 1 1 1 1 0

0 0 1 0 1 1 0

0 1 0 1 0 1 1

0 0 1 0 1 0 1

Fair dataset
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Discover causal association rules from large databases of 

binary variables

From association to causation

A B C D E F Y

1 1 1 1 1 1 1

1 0 1 0 1 1 1

1 1 0 1 0 1 0

1 0 1 0 1 0 0

0 1 1 1 1 1 0

0 0 1 0 1 1 0

0 1 0 1 0 1 1

0 0 1 0 1 0 1

Fair 

dataset

• A: Exposure variable

• {B,C,D,E,F}: controlled variable set.

• Rows with the same color for the 

controlled variable set are called 

matched record pairs.

A=0

A=1 Y=1 Y=0

Y=1 n11 n12

Y=0 n21 n22

OddsRatioD f (A®Y ) =
n12

n21

An association rule              is a causal association rule if: A → Y 1)( → YAOddsRatio
fD
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Discover causal association rules from large databases of 

binary variables

From association to causation

A B C D E F G Y

1 1 1 1 1 1 0 1

… … …

1 1 0 1 0 1 0 1

1. Remove irrelevant variables (support, local 

support, association)

2. Find the exclusive variables of the  exposure 

variable  (support, association), i.e. G, F. 

The controlled variable set = {B, C, D, E}.

3. Find the fair dataset. Search for all matched record pairs 

4. Calculate the odds-ratio to identify if the testing rule is causal

5. Repeat 2-4 for each variable which is the combination of   

variables. Only consider combination of non-causal factors.

For each association rule (e. g.             )   A → Y

A B C D E Y

1 1 1 1 1 1

… … …

0 1 1 1 1 0

… …
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Quality ImprovementCausality in management



Sir Francis Bacon
1561 - 1626

…the true method of 

experience. . . first lights the 

candle, then by means of the 

candle shows the way; 

commencing as it does with 

experience duly ordered and 

digested, not bungling or 

erratic, and from it educing 

axioms, and from established 

axioms again new 

experiments. .

Causality in science
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So, what did we cover
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1. Background on causality in science and statistics

2. Fishbone cause and effect diagrams

3. Bayesian networks

4. Randomization in experimental designs

5. Propensity scores in observational studies

6. Counterfactuals and do calculus

7. Personalized medicine, condition based maintenance and Industry 4.0

8. Future research areas
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Thank you for 
your attention

Science

Computer 
Science

Engineering

Analytics


