
Lecture 17 - 12-05-2020

1.1 Kernel functions

We use a notion of feature expansion. They are di�erent but somehow they

reach something similar. In fact Linear classi�er have high bias.

Linear predictor use hyper plane as basic brick to build prediction.

1.1.1 Feature expansion

Given φ : Rd −→ V V is typically RN N >> d

For example:

d = 2 N = 6 φ = R2 −→ R6

φ(x1, x2) = (1, x21, x
2
2, x1, x2, x1x2)

We have a homogenous hyper plane.

w ∈ R6 {z ∈ R6 : wT z = 0} z = φ(x) x ∈ R2

∀x ∈ R2 wtφ(x) = w1 + w2x
2
1 + w3x

2
2 + w4x1 + w5x

2 + w6x1x2 = 0

wTφ(x) = 0

Figure 1.1:

φ : Rd −→ RN ΠM
s=1xV s v ∈ {1, ...d}k k = 0, ..., n

h(x) = sgn(wTφ(x)) wTφ(x) =
N∑
i=1

wiφ(x)i

1

The problem of this feature expansion is the degree of the monomials!

N =
n∑
i=0

|{1, ...d}k| =
n∑
k=0

dk =
dn+1 − 1

d− 1
= Θ(dn)

So it's exponential! But this feature expansion can be implemented in a

e�cient way.

1.1.2 Kernels implements feature expansion (E�ciently

wTφ(x) Perception w ↔ w + ytxtI{ytwTxt ≤ 0} MANCA quadlcosa

w =
∑
s∈S

ysxs
∑
s∈S

ysφ(xs)

where S is a subset of traning set where updates occurred.

Every time i make a mistake i add some of this product of data points.

If I run this using example that are images accourding to some feature ex-

pansion map (φ), I will get the perceptron after the mapping.

wTφ(x) =
∑
s∈S

ysφ(x)Tφ(xs)

It's a inner problem and can have exponentially degree of the component.

Kernels help me compute this inner product φ(x)Tφ(xs) quickly

φ : R2 −→ R6 φ(x1, x2) = (1, x21, x
2
2,
√

2x1,
√

2x2,
√

2x1x2)

φ(x)Tφ(z) = 1 + x21z
2
1 + x22z

2
2 + 2x2z2 + 2x1x2z1z2 = (1 + xT z)2 = k(x, z)

wTφ(x) =
∑
s∈S

ys k(x, x2)

k(x, z) implements φ(x)Tφ(z) ∀x, z and φ de�ned as before

How to we generalise this?

kn (x, x′) = (1 + x2x′)n

This is called polynomial kernel.

2

I want to check now what is the φ for Kn?

I want to compute φ s.t. φ(x)Tφ(x′) = kn(x, x′) = (1 + xTx′)n

We can use Newtons bynomial theorem:

(1 + xTx′)n =
n∑
k=0

(
n

k

)
(xtx′)k

(xTx′)k =

(
d∑
i=1

xix
′
i

)k

=
∑

v∈{1,...d}k

(
k∏
s=1

xV sx
′
V s

)

φ(x) =

(√(
n

k

) k∏
s=1

xV s

)
k = 0, ..., n v ∈ {1, ...d}k

When I am using polynomial kernel I am implicitely using the feature ex-

pansion ...

Can an algorithm work using kernel?

Perceptron works!

S = 0
For t = 1, 2, ...
1) Get (xt, yt)
2) ŷt = sgn

(∑
s∈S ys K(x, xs

)
3) If ŷt 6= yt S ←− S ∪ {t} w ← w + ytφ(xt)

So I am representing y as a sum and not as a vector. In fact, w =
∑
s∈S

ysφ(xs)

ù

1.2 Gaussian Kernel

γ > 0 kγ(x, x
′) = exp

(
− 1

2 γ
‖x− x′‖2

)
e−

1
2 γ

(x−x′)2

I can controll the distribution changing the value of γ

3

Figure 1.2:

ŷt = sgn

(∑
s∈S

ys Kγ(x, xs)

)

Figure 1.3:

Negative or positive gaussin component looking at the distance.

Now I want to compute: φγ : Rn −→ V

exp

(
− 1

2 γ
‖x− x′‖2

)
= exp

(
− 1

2 γ

(
‖x‖2 + ‖x′‖2

))
· exp

(
1

γ
xTx′

)
=

where e = x+ x2

!2
...

= exp

(
− 1

2 γ
‖x‖2

)
· exp

(
− 1

2 γ
‖x′‖2

)
·
∞∑
n=0

1

n!

(
xTx′

)2
γn

4

Gaussian Kernel is a linear combination of in�nitely many poly kernels.

The higher I go the small is n!. Gaussian kernel mapping into a space that

is very large. So large that it has in�nitely many dimension. Why? Because

each polynomial kernel maps to in�nitely dimensions.

φγ maps Rd into a space of in�nitely many dimensions.

φγ : Rd → V kγ (x, x′) = φγ(x)Tφγ(x)

It maps to in�netely many dimension, so it maps to a function!

φγ(x) is a function.

In general, when I learn a linear predictor using kγ
I learn

∑
s αs k(xs, ·) = f

wTφ(x)

Hγ ≡ {
N∑
i=1

αi k (xi, ·) : x1, ..., xN ∈ Rd, α1, ..., αN ∈ R, N ∈ N }

Theorem

∀γ > 0 ∀f : Rd → R continous, ∀ε > 0
∃g ∈ Hγ that approximates f with error ε
We de�ne a function with H. We see the · and this tell us is a function. So

we can evaluate every kind of x point in · position.

We are able to get a super parametric algorithm and transform it in a non-

parametric algorithm. Parametric algorithms is de�ned by an arbitrary num-

ber of parameter we cannot adapt it for every case.

Gaussian Kernels enable consistency by using feature expansion with in-

�nitely many components.

5

