Lecture 17 - 12-05-2020

1.1 Kernel functions

We use a notion of feature expansion. They are different but somehow they
reach something similar. In fact Linear classifier have high bias.
Linear predictor use hyper plane as basic brick to build prediction.

1.1.1 Feature expansion

Given ¢ : R — V V is typically RV N >>d

For example:
d=2 N=6 ¢=R>?— RS

¢(x17 xQ) = (17 1'%7 x%a Ty, T, J"lx?)

We have a homogenous hyper plane.
weR {zeRC:wl2=0} 2=¢(x) zeR?

vz € R? w'e(z) = wy + wox? + wsx3 + wyry + wsr? + W13 = 0
whé(z) =0
HAS
EEERr G
ey
EEaE
HHHHF
1HH
Figure 1.1:

¢: R —RY TM zy, ve{l,.d}* k=0,..,n
N
h(z) = sgn(w”¢(z)) w'o(x) = wid(x),
i=1

1

The problem of this feature expansion is the degree of the monomials!

n n dn+1 -1 .
N=> {1, ..df|=> d" = —— ="
=0 k=0

So it’s exponential! But this feature expansion can be implemented in a
efficient way.

1.1.2 Kernels implements feature expansion (Efficiently

wl¢(x) Perception w <> w + yex I {y;wx; < 0} MANCA quadlcosa

W= Yt~ > yad()

seS SES

where S is a subset of traning set where updates occurred.

Every time i make a mistake i add some of this product of data points.

If T run this using example that are images accourding to some feature ex-
pansion map (¢), I will get the perceptron after the mapping.

wT¢<x) = Z y5¢($)T¢(x5)

sES

It’s a inner problem and can have exponentially degree of the component.
Kernels help me compute this inner product ¢(z)T¢(x,) quickly

¢ R* — R° Py, 12) = (1, iUi xi, \/§$1, \/51‘2, \/§I11’2)

gb(m)Tgb(z) = 1+ x%zf + x%zg + 22929 + 2102129 = (1+ :1CTZ)2 = k(x,2)

wl(x) =)y, k(w,2)

seS

k(z, z) implements ¢(x)7¢(z) Va,z and ¢ defined as before

How to we generalise this?
ky (z,2') = (14 2%2")"

This is called polynomial kernel.

I want to check now what is the ¢ for K7
[want to compute ¢ s.t. ¢(x)Td(2) = k,(z,2') = (1 + 2Ta")"
We can use Newtons bynomial theorem:

(1+2T2)" = Xn: <Z) (zta’)

k=0

d k k
(272!)F = (2@:}:;) = ¥ (Hmﬂ%)

vef{l,...d}k \s=1

¢(g;):< (Z)ljlxv> k=0,...n wve{l, . .dF

When T am using polynomial kernel T am implicitely using the feature ex-
pansion ...

Can an algorithm work using kernel?

Perceptron works!

S=0
Fort=1,2, ..
1) Get (2, yr)

2) G = sgn (L,esvs K(@,)
U g #y S<+— SU{t} w 4— w ~+ yrp(xy)

So I am representing y as a sum and not as a vector. In fact, w = Zysgzﬁ(xs)
ses

i
1.2 Gaussian Kernel

1
v>0 ky(z,2') =exp (—ﬂ |z — x'|]2>

S AL
o @)

I can controll the distribution changing the value of ~

Figure 1.2:

gt = sgn (Z Ys K,Y(LE,QTS))

seS

Figure 1.3:

Negative or positive gaussin component looking at the distance.
Now I want to compute: ¢, : R" — V

1 1 1
exp (=gl = a'1P) = exp (=5 (ol + 1)) - exp (a7) =

2
where e = z + ”,”—2

1 1 -
= (el e (1) Y L)

Gaussian Kernel is a linear combination of infinitely many poly kernels.
The higher I go the small is n!. Gaussian kernel mapping into a space that
is very large. So large that it has infinitely many dimension. Why? Because
each polynomial kernel maps to infinitely dimensions.

¢, maps R? into a space of infinitely many dimensions.

¢y R =V ky (2,2) = ¢y (2) b, (2)
It maps to infinetely many dimension, so it maps to a function!
¢,(x) is a function.
In general, when I learn a linear predictor using k.,
I learn > ay k(zs,-) = f
w'(z)

N
H’YE{Zai k’(!lj'l,) D X1,y TN GRd, A1y .y, N GR, NGN}
=1

Theorem

Vy > 0 Vf:R? — R continous, Ve > 0

dg € H, that approximates f with error ¢

We define a function with H. We see the - and this tell us is a function. So
we can evaluate every kind of x point in - position.

We are able to get a super parametric algorithm and transform it in a non-
parametric algorithm. Parametric algorithms is defined by an arbitrary num-
ber of parameter we cannot adapt it for every case.

Gaussian Kernels enable consistency by using feature expansion with in-
finitely many components.

