\documentclass[../main.tex]{subfiles} \begin{document} \chapter{Lecture 9 - 07-04-2020} $\hat{h}$ is ERM predictor \\ $$ \ell_D\left(\hat{h}\right) \leq min \, \, \ell_D\left( h \right) + \sqrt[]{\frac{2}{m} \, \ln \, \frac{2 \, H}{\delta}} \qquad \textit{ with prob. at least $1-\delta$} $$ \\ Now we do it with tree predictors\\ \section{Tree predictors} $$ X = \{ 0,1\}^d \longrightarrow \blue{Binary classification} $$ $$ h : \{0, 1 \}^d \longrightarrow \blue{Binary classification H}1 $$ How big is this class? \\Take the size of codomain power the domain $\longrightarrow $ $|H| = 2^{2^d}$\\ Can we have a tree predictor that predict every H in this class? \\ For every $ h : \{0,1\}^d$ $\longleftrightarrow$ $\{-1,1\} \quad \exists T$\\\\ We can \bred{build a tree } such that \quad $h_T = h$ \begin{figure}[h] \centering \includegraphics[width=0.6\linewidth]{../img/lez9-img1.JPG} \caption{Tree building} %\label{fig:} \end{figure}\\ $ X = (0,0,1,...,1) \qquad h\left(x\right) = -1$ \\ $ \blue{$ x_1,x_2,x_3,...,x_d$} $ \\\\ I can apply my analisys to this predictors \\ If I run ERM on $H$ $$ \ell_D\left(\hat{h}\right) \, \leq \, min \, \ell_D \left(\hat{h}\right) + \sqrt[]{\frac{2}{m} \, 2^d \, \ln 2 + \ln \frac{2}{\delta}} \qquad \longrightarrow \bred{$\ln|H|+\ln \frac{2}{\delta}$} $$ No sense! What we find about training set that we need? \\ Worst case of overfitting $m >> 2^D = |X|$ $\Rightarrow$ training sample larger \\\\ \textbf{PROBLEM: }cannot learn from a class to big ( $H$ is too big) \\ I can control $H$ just limiting the number of nodes. \\\\ $H_N$ $\longrightarrow$ tree T with at most $N$ node, $N << 2^D$ \\ $|H_N| = \, ?$ \\ $$ |H_N| = \left( \textit{\# of trees with } \leq N \, nodes \right) \times \left( \textit{\# of test on interval nodes } \right) \times \left( \textit{ \# labels on leaves} \right) $$ $$ |H_N| = \red{\bigotimes} \, \times \, d^M \, \times 2^{N-M} $$ $N$ of which $N-M$ are leaves \begin{figure}[h] \centering \includegraphics[width=0.6\linewidth]{../img/lez9-img2.JPG} \caption{Tree with at most N node} %\label{fig:} \end{figure}\\ $$\red{\bigotimes} \textit{\# of binary trees with N nodes, called \bred{Catalan Number}} $$ \subsection{Catalan Number} *We are using a binomial * $$ \frac{1}{N} \binom{2 \, N -2}{N-1} \quad \leq \quad \frac{1}{N} \, \left(e \, \frac{\left(2\, N -2 \right)}{N-1} \right)^{N-1} = \frac{1}{N} \, \left( 2 \, e \right)^{N-1} $$ $$ \binom{N}{K} \quad \leq \quad \left( \frac{e\, n}{k}\right)^k \qquad \textit{ from Stirling approximation} $$ Counting the number of tree structure: a binary tree with exactly N nodes. Catalan counts this number. $\longrightarrow$ \blue{but we need a quantity to interpret easily}. So we compute it in another way. \\ Now we can rearrange everything. \\ $$ | H _N | \quad \leq \quad \blue{ $ \frac{1}{N}$} \, \left( 2 \, e \right)^{N-1} \, H^M \, \bred{$2^{N-M} $} \quad \leq \quad \left( 2 \, e \, d \right)^N $$ \qquad \qquad \qquad \qquad \qquad \qquad \qquad \bred{$d \geq 2$} \qquad \bred{$\leq \, d^{N-M}$ }\\ where \blue{we ignore $ \frac{1}{N}$ since we are going to use the $\log$} \\\\ ERM on $H_N \quad \hat{h} \quad $ $$\ell_D \left(\hat{h}\right) \, \leq \, \min_{\mathbf{h \, \in\, H_N}} \, \ell_D \left( h \right) + \sqrt[]{\frac{2}{m} \, \left( \bred{$ N \cdot \left( 1+ \ln \left(2 \cdot d \right) \right)$} + \ln \frac{2}{\delta} \right) } $$ \\ were \bred{$ N \cdot \left( 1+ \ln \left(2 \cdot d \right) \right)$} \quad $= \quad \ln \left( H_N \right) $\\\\ In order to not overfit $ m >> N \cdot \ln d $\\ $N \cdot \ln d << 2^d$ for reasonable value of $N$ \\ We grow the tree and a some point we stop. $$ \ell_D\left(h\right) \, \leq \, \hat{\ell}_S \left(h\right) + \varepsilon \qquad \forall h \in H_N \qquad \textit{with probability at least $1-\delta$} $$ \\ \bred{remove $N$ in $H_N$ and include $h$ on $\varepsilon$} \\ we remove the $N$ index in $H_N$ adding $h$ on $\varepsilon$ $$ \ell_D \left(h\right) \, \leq \, \hat{\ell}_S \left(h\right) + \varepsilon_{\red{h}} \qquad \forall h \in H_{\not{\red{N}}} $$ $$ W : H \longrightarrow \left[ 0,1 \right] \qquad \sum_{h\in H}{} w\left(h\right) \leq 1 $$ \\ \blue{How to use this to control over risk?} $$ \barra{P} \left( \exists h \in H \, : \, | \, \hat{\ell}_S \left(h \right) - \ell_D \left( h \right) \, | \, > \varepsilon_h \right) \quad \leq $$ \bred{where $\hat{\ell}_S$ is the prob my training set cases is true} $$ \leq \, \sum_{h \in H}{} \barra{P} \left( \, | \, \hat{\ell}_S \left(h \right) - \ell_D \left( h \right) \, | \, > \varepsilon_h \right) \, \leq \, \sum_{h \in H}{} 2 \, e^{-2 \, m \, \varepsilon \, h^2 } \, \leq \, $$ $$ \leq \, \delta \qquad \longrightarrow \textit{since $w(h)$ sum to $1$ $ \left( \, \sum_{h \in H} \, \right) $} $$ I want to choose \bred{$ \quad 2 \, e^{-2 \, m \, \varepsilon \, h^2 } \, =\, \delta \, w(h)$} \\ $$ 2 \, e^{-2 \, m \, \varepsilon \, h^2 } \, =\, \delta \, w(h) \qquad \Leftrightarrow \qquad \textit{--- MANCA PARTEEEE --- } $$\\ therefore: $$ \ell_D \left(h \right) \leq \hat{\ell}_S \left(h\right) + \sqrt[]{\frac{1}{2 \, m} \cdot \left( \ln \frac{1}{w(h)} + ln \frac{2}{\delta} \right) } \quad \textit{w. p. at least $1-\delta$ \quad $\forall h \in H$} $$ \\ Now, instead of using ERM we use $$ \hat{h} = arg\min_{h \in H} \left(\hat{\ell}_S\left( h \right) + \sqrt[]{ \frac{1}{2 \, m} \cdot \left( \ln \frac{1}{w(h)} + ln \frac{2}{\delta} \right) } \right) $$ \bred{where $\sqrt[]{...}$ term is the penalisation term} \\\\ Since our class is very large we add this part in order to avoid overfitting. \\ Instead of minimising training error alone i minimise training error + penalisation error.\\\\ In order to pick w(h) we are going to use \bred{coding theory}\\ The idea is I have my trees and i want to encode all tree predictors in H using strings of bits. \\\\ $\sigma : H $ $\longrightarrow $ $\{ 0,1 \}^* \qquad \bred{coding function for trees} $ \\ $\forall \, h, h' \in H$ \qquad $\sigma(h)$ not a prefix of $\sigma(h') $\\ $h \neq h'$ \qquad \qquad where $\sigma(h)$ and $\sigma(h')$ are \bred{string of bits} \\\\ $\sigma$ is called \blue{istantaneous coding function} \\ Istantaneous coding function has a property called \bred{kraft inequality} $$ \sum_{h\in H}{} 2^{-|\, \sigma\left(h\right)\, |} \leq 1 \qquad w(h) = 2^{-|\,\sigma(h)\,|} $$ \\ I can design $\sigma : H \longrightarrow \{0,1\}^* \quad istantaneous \ |\,\sigma(h)\,|$\\ $ \ln |H_N| = O\left(N \cdot \ln d\right) $\\ \bred{number of bits i need \quad $=$ \quad number of node in $h$} \\\\ Even if i insist in istantaneous i do not lose ... -- MANCA PARTE -- \\ $$ | \, \sigma (h) \, | = O \left( N \cdot \ln d\right) $$\\ Using this $\sigma$ and $w(h) = 2 ^{-|\, \sigma(h)\,|} $ $$ \ell_D\left(h\right) \, \leq \, \hat{\ell}_S \left( h \right) + \sqrt[]{\frac{1}{2 \, m} \cdot \left( \red{c} \cdot N \cdot \ln d + \ln \frac{2}{\delta} \right) } \qquad \textit{w. p. at least $1-\delta$} $$ where \red{$c$} is a constant \\ $$ \hat{h} = arg\min_{h\in H} \left( \hat{\ell}_S \left( h \right) + \sqrt[]{\frac{1}{2 \, m} \cdot \left( \red{c} \cdot N \cdot \ln d + \ln \frac{2}{\delta} \right) } \, \right) $$ where \bred{$m >> N \cdot h \cdot \ln d$} \\ If training set size is very small then you should not run this algorithm. \begin{figure}[h] \centering \includegraphics[width=0.6\linewidth]{../img/lez9-img3.JPG} \caption{Algorithm for tree predictors} %\label{fig:} \end{figure}\\ This blue curve is an alternative example. We can use Information criterion.\\\\ As I increase the number of nodes, $N_h$ decrease so fast. You should take a smaller tree because it gives you a better bound. It’s a principle known as Occam Razor ( if I have two tree with the same error, if one is smaller than the other than i should pick this one). \\\\ Having $N^*$ \end{document}