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1.

This is the Conditional Residual Sum of Squares for a Conditional Maximum Like-
lihood estimate in a MA(1) model assuming that the disturbances &; are normally
distributed and p = 0 (and imposing €y = 0 as usual). (this is the answer to part ii.)

For part i.,

Using g9 = 0 for any 6, &, (0) = v — 11 (0)

yp = —04, Yo = 0.8, ys = 0.6, Yy = —0.2
and assuming £y = 0 for the values 6 = 0.5, § = —0.5, § = 0.

e (0) t=1 t=2
0=1/2 | —04—1/2%x0=—-04 08—1/2%(—0.4)=1.0
0= —04-0%0=-04 08—0x%(—04)=0.8
f=—1/2| —04+1/2%x0=—-04 08+1/2%(—0.4) =06

e (0) t=3 t=4

—1/2 | 06-1/2%1=01 —02—-1/2x0.1=-0.25

0=0 0.6 -0x0.8=0.6 —02-0%x0.6=-0.2
0=—1/2]06+1/2%0.6=09 —02+1/2%0.9=025



2 () t=1 t=2 t=3 t=14
0=1/2 | (—04)%=016 12=1  0.12=0.01 (—0.25)> =0.0625
0=0 |(=04)>=016 08> =064 0.62=036 (—0.2)>=0.04

0=—-1/2|(=04)>=0.16 0.62=036 0.92=081  0.25>=0.0625

Z?:l 51:2 (9)
0=1/2 0.16 + 14 0.01 +0.0625 = 1.2325
0=0 0.16+0.64 +0.36 +0.04 = 1.2

0=-1/2|0.16 4+ 0.36 4+ 0.81 4+ 0.0625 = 1.3925
iii.
This means that if we were to pick a conditional maximum likelihood estimate 6
between the three candidates 1/2,0, —1/2, we would pick 6 =0.
If we used the whole [—0.98,0.98] the estimate § would be 0.14. The function
Y€ () is
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2. The estimation output is

Dependent Variable: Y

Sample: 199

Included observations: 99

Convergence achieved after 33 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.
Cc 0.068594 0.157992 0.434161 0.6651
MA(1) 0.730583 0.084889 8.606327 0.0000
SIGMASQ 0.833208 0.096710 8.615568 0.0000
R-squared 0.390882 Mean dependent var 0.074318
Adjusted R-squared 0.378192 S.D. dependent var 1.175521
S.E. of regression 0.926955 Akaike info criterion 2723719
Sum squared resid 82.48761 Schwarz criterion 2.802359
Log likelihood -131.8241 Hannan-Quinn criter. 2.755537
F-statistic 30.80244 Durbin-Watson stat 1.840167
Prob(F-statistic) 0.000000
Inverted MA Roots -73

We know that, for MA(1) model, the LS/ML estimate is such that
VT (0 —0) =4 N(0,1 - 6?)

Under Hy, one feasible test statistic is therefore

v l=9 —4 N(0,1)
1—6°
so, under Hy := {0 = 0.9}, this takes value

Jgl0730583 — 0.9) o

V1 —0.92

and | — 3.867| > 1.96 so the null hypothesis is not rejected at the standard 5 % sig-
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nificance level. Alternatively, we can use a consistent estimate to estimate € in the

variance. In this case, a feasible test statistic is

vill=9 —a N(0,1)

~2

1-0

and
\/@(0.730583 —0.9)

= —2.46869
V1 —0.7305832

As another alternative still, using the regression output, we could have calculated

(0.730583 — 0.9)

= —1
0.084889 %

which again is a non-rejection of Hj.

Finally, we could have run the test directly using e-views: the Wald test gives

Wald Test:

Equation: Untitled

Test Statistic Value df Probability
t-statistic -1.995747 96 0.0488
F-statistic 3.983004 (1, 96) 0.0488
Chi-square 3.983004 1 0.0460

Null Hypothesis: C(2)-0.9=0
Null Hypothesis Summary:

Normalized Restriction (= 0) Value Std. Ermr.

-0.9+C(2) -0.169417 0.084889

Restrictions are linear in coefficients.



As we repeat the exercise for a MA(2) model, we estimated

Dependent Variable: Y
Method: ARMA Maximum Likelihood (OPG - BHHH)

Sample: 199
Coefficient covariance computed using outer product of gradients

Variable Coefficient  Std. Error t-Statistic Prob.

Cc 0.066712 0.172953 0.385720 0.7006

MA(1) 0.799120 0.121864 6.557489 0.0000

MA(2) 0.089314 0.108816 0.820784 0.4138

SIGMASQ 0.826064 0.113130 7.301906 0.0000
R-squared 0.396105 Mean dependent var 0.074318
Adjusted R-squared  0.377034 S.D. dependent var 1.175521
S.E. of regression 0.927818 Akaike info criterion 2.735568
Sum squared resid 81.78034 Schwarz criterion 2.840421
Log likelihood -131.4106 Hannan-Quinn criter. 2777991

Inverted MA Roots -13 -.66

and the outcome of the test is

Wald Test:
Test Statistic Value df Probability
F-statistic 2.693180 (2, 95) 0.0728
Chi-square 5.386361 2 0.0677

Null Hypothesis: C(2)=0.9, C(3)=0
Null Hypothesis Summary:

Nomnalized Restriction (= 0) Value Std. Emr.
0.9+C(2) -0.100880 0.121864
C(3) 0.089314 0.108816

Restrictions are linear in coefficients.



Therefore, the null hypothesis is not rejected in this case.

This difference in outcomes seems puzzling: when we assumed 6, = 0 and tested
01 = 0.9 we rejected the hypothesis that a MA(1) model with 6; = 0.9 was appropriate.
However, when we estimated the MA(2), we did not rejected the hypothesis that a
MA(1) model with #; = 0.9 was appropriate.

To understand why, check the estimated standard errors for 6, in both the estimates:
this is 0.084 for the MA(1) model, and 1.12 for the MA(2). This is not surprising:
from the formulae for the variance - covariance matrix of the estimates, we know that
the variance of #; should be (1 — #?)/T when the MA(1) is estimated but (1 — 62)/T
when the MA(2) is estimated. If 65 = 0 then the variance in the MA(2) model is much
larger. This reflects the fact that information is used to estimate 0, as well, so we are
less confident about #; and this additional uncertainty makes us not reject the null
hypothesis.

This example shows that we should estimate parsimonious models, as we gain less
information from non-parsimonious models.

Finally, a note regarding the estimated standard errors from eviews. We know that for
a MA(1) (for example) the asymptotic variance is (1 — 63)/T": eviews however does not
use this bit of information, and estimates the variance as outer product of gradients.
This is because obviously eviews whould have to change the formula for the asymptotic
variance any time we change model, and therefore should have the formula (in terms of
0 and ¢ for any possible ARMA modeland this is impossible. Using the outer product
of the gradients gives a consistent estimate of the variance for any model, thus avoiding

the problem.



3. Recall

Akaike information criterion AIC' = —21nlik (p,q) +2(p + q)

Bayes information criterion BIC' = —21Inlik (p,q) + InT (p + q).
(p, q) Inlik(p,q) AIC BIC

0) —248.6914 499.38 502.68
) —257.1481 516.30 519.59
)
)

—248.6750 501.35 507.95
—251.3668 506.73 513.33

,0)  —247.8323 499.66 506.26
So both the AIC and the BIC selected an AR(1) model.

NOTE 1: notice that the highest maximized log-likelihood is for AR(2). As it
happens, the AR(2) nests the AR(1) (i.e, we can write the AR(1) as a restriction of the
AR(2)), so we can compare them with a likelihood ratio test. If we tested the AR(1)
against the AR(2) using a likelihood ratio test, 2 (+248.6914 — 247.8323) = 1.7182 so
the null hypothesis that the additional parameter is 0 would not be rejected (at 5%

size).

NOTE 2: I discussed both AIC and BIC to give an example. However, discussing
only one of them would have been sufficient for a complete solution. In fact I do not
recommend running both of them, as this could leave to conflicting results: suppose,
for example, that AIC selected AR(2) and BIC selected AR(1), which one would you
choose? We studied reasons to prefer AIC and reasons to prefer BIC. For example, if I
prefer BIC because it gives consisent estimate of (p, q), then I should not use AIC, so

it is not necessary to compute it.

NOTE 3: some candidates may note that, given the formula of the Information
Criterion and the values of the maximised log-likelihoods, in this case it is clear that
the recommended model can only be the AR(1) (best log-likelihood when p + ¢ = 1)
or the AR(2) (best log-likelihood when p 4+ ¢ = 2). This is very elegant and perfectly
acceptable. By the way, at this point, as the AR(1) is nested in the AR(2), of course it
is natural to compare them with a likelihood ratio test (although using an information

criterion instead is also perfectly acceptable).



4.
When the model is correctly specified, the residuals estimate the original i.i.d. distur-

bances. The Portmanteau statistic

T i —a in—(zﬂrq)
j=1
as T — oo, where p and ¢ are the numbers of AR and MA parameters. in this case
the Portmanteau statistic takes value 200 (0.052 + (—0.07)* + 0.12) = 3.48: we have
m=3,p=1,q=1, so the critical distribution is a x?. Taking the size as 5% as usual,
the critical value is 3.84, so the hypothesis is not rejected, and we can conclude that

the approximation is satisfactory.

5.

Maximised log-likelihoods are

MA(1): —131.8241

MA(2): —131.4106 Thus the MA(2) has higher maximised likelihood. However, we
know that adding parameters always increase the likelihood, so maximising the like-
lihood does not deliver a consistent estimate. Comparing these with the information
criteria,

BIC (Shwarz) are

MA(1): 2.802359

MA(2): 2.840421 so the BIC selected the MA(1) model.

NOTE: Notice that, as MA(1) and MA(2) are nested (i.e., we can write MA(1) as a re-
striction on parameters of MA(2)) we could compare them also using a Likelihood Ratio
tests. Likelihood ratio tests are asymptotically equivalent to Wald tests, so we could
use results from exercise 2 to conclude that MA(1) should be preferred. Indeed,using
the likelihood ratio test (or the Wald test) would be the best thing to do (because these
are statistical tests, and because the likelihood ratio test has nice power properties un-
der some conditions): however, we compared MA(1) vs. MA(2) using the information

criterion to familiarize ourselves with it.



The Portmanteau test on the residuals (using up to 10 autocorrelation) yields

Sample: 1 99
Included observations: 99
Q-statistic probabilities adjusted for 1 ARMA term

Autocorrelation Partial Correlation AC PAC Q-Stat Prob
N N 1 0.070 0.070 0.5015
N v 2 0.041 0.037 06772 0.411
c o v 3 0.018 0.012 0.7097 0.701
NN v 4 0.043 0.040 0.9062 0.824
Cf Co 5 0.036 0.029 1.0423 0.903
iy iy 6 0.109 0.102 2.3120 0.805
NN N 7 -0.035 -0.052 2.4417 0.875
C el 8 0.124 0.123 4.1390 0.764
N v 9 0.056 0.038 4.4863 0.811
C N 10 0.095 0.076 5.4905 0.790

From the P-value of the Q statistic, we conclude that the null hypothesis of no residual

autocorrelation is not rejected. Thus, the MA(1) is an acceptable specification.



