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Chapter 7: Asymptotic properties of
parametric estimates

Topics: Asymptotic properties of the
estimates based on the autocorrelation
function; Asymptotic distribution of the
OLS/CML estimates in an AR(p); Asymptotic
distribution of (Pseudo) Maximum Likelihood
estimates.



Estimates limit properties

Limit properties of the Correlogram based
estimates, of the Maximum likelihood type
estimates (either the exact one, or the "conditional"
one) and the minRSS pseudo-maximum likelihood
estimate.

Let
Yt = Co+ ¢o1Ye1 +...+Pop Yip
+ &t + 00161 +.. . H00,gEt—q,
gt ~ 1id(0,03)
the roots of 1 — ¢o1Z2—...—¢opz° = 0 and of

1+601Z+...40042z% = O are all outside the unit
circle, and there is no common factor.

yFor Maximum Likelihood estimates, we also
assume ¢; ~ Nid(0,03);

% For Conditional Maximum likelihood we also
assume ¢; ~ Nid(0,03), Yp, ..., Y1 not random,

8p — O,...,gp_q+]_ — O



Let

BO = (C0’¢0;1, e ’¢0;p,90;1, o ’Qo;q)/

be the set of parameters of interest (i.e., all the
parameters of the model except ¢3), and let P be
one of the following estimates of

% Correlogram based (ﬁc)
% Maximum likelihood types (ﬁML)
% Pseudo maximum likelihood (ﬁ o)

(i.e. Ec is the Correlogram based estimate of f,,
B,, is any Maximum likelihood type estimate of
Bo ﬁPML is a minRSS Pseudo-Maximum likelihood
type estimate of B).



Limit properties: consistency

Then
ﬁ —n BO as T —» o

iA.e. as T - oo, B (any of ﬁc, or of ﬁML or of
Beyy ) 1S @ consistent estimate of B,,.

2 2
It also holds that 6¢ —p 6§, 6y —p 0§ and

~2 2 ~2 A2 ~2

OpmL ™ OpadS T > o (Where Cc, OML and OpyL are
the correlogram based, ML and PML estimates of
o §, respectively).



Limit properties: asymptotic
normality

JT(Be -
ﬁ(ﬁvn_ B
ﬁ<EPML -

B,) ~a N(0,Zc)
30> 4 N(O,ZmL)

B,) ~d N(O,Zy)

as T — oo, JT <§ = Bo) is asymptotically
normally distributed. Notice however the
dispersion is, in general, different.



% Both the matrices £¢c and Zy are positive
definite.

% The ML /PML estimate is at least as efficient the
Correlogram based one, i.e. Z¢c — ZyL is a positive
semidefinite matrix.

% The Correlogram based estimate and the PML

estimates of ¢o;1, ..., Pop are as efficient as the
ML/PML estimates of them, if g1 = 0,...,00q = 0
(ie the true model is AR(p)).

% If we are also interested in the estimation of ¢,

Bo = (Co,dou,-- - dop. 001, - .,004,05)
let Elvu_ be the exact ML estimate, then
ﬁ(ﬁML = Bo) —d N(O,ZmL) The matrix Ey is
often referred to as 371, where

< o 12t
T OB’ o,

is called information matrix.




As usual, the standard errors can be
seen as a measure of the precision
of the estimate, and can be also
used in testing.



Examples of Zm:

AR(D) 1 JT(§-¢o) ~a N(O,1-¢3)

AR(2) : ﬁ( fl -

—d N(O,

_¢2

1- ¢(2);2

i ~¢0.1(1 + ¢o2)

)

—¢0,1(1+ ¢o;2) )
1- ¢(2);2

MA() @ /T (0-60) —~a N(O,1-63)

.
MA?2) : JT R
0
 1_¢2
aN[ o 0;2
_90;1(1 — 90;2)

e )

—00,1(1 - 60:2)
1-6%,



> S

ARMA(1,1) : ﬁ( [ zo J)

— —-1

(1-¢3)"  (1+¢obo)™"
(1+¢of0)™ (1-603)~"

-4 N| O,

the last variance can be rewritten as
1+ (/5090
(¢o + 00)°

 (1-¢2)(L+ doBo) —(1—62)(L— ¢2)
~(1-¢3)(1-68) (1-63)(L+goblo)

% These do not depend on c§;

% The estimates in the AR(1), MA(1) are more
precise the stronger the dependence.



It is easy to derive the limit distribution in the AR
models: for example, AR(1), consider the
Conditional maximum likelihood estimate (also
assume Co = 0 and it is known)

_ Z;rzz Yi-1Yt B ZLZ Yt_l((boYt_l + St)

$ T - T
Zt=2 Ytz—l thz Ytz—l
1 T
_ gy T 2 Y18
1 T 2
T Do, Vet
then look at

" JT % Zthz Yiaé
ﬁ<¢—¢o> = %ZLZYEA
Clearly (by a Law of Large Number)
o2
¢ :
in /T =5 Z _, Yragt, Yeaer is not actually

independent, but it has similar properties, so, upon
noticing that

E(Yt_lgt) = E(Yt_]_)E(St) =0

L+ ZY& ~p E(Y2,) =

V(Yt_lgt) = V(Yt_l)V(St) =




by a Central Limit Theorem

T 2
-l ﬁ D> Yeaen > N(O =0 2)
t=2

) GO
1-¢5

combining the two, (using also the fact that

JTIJT-1 - 1)

o5 6(2)

JT(9-90) ~a N 02— | = N©,1-¢})

(2%)

This can be generalised to AR(p),

/_ 251 Po;1 \

JT o= -4 N(O, V')

\_?ﬁp_ _¢0;p_/




To prove the general result for the limit
distribution, Consider an approximate Taylor

expansion of c? g(B) in B,

sz@(ﬁ)

~ G%#Q(BO) — G%%H(Bo) ﬁ(ﬁ - Bo)

We know that

9(B) =0

1 1 u ost(B)
2 1 I t
o /T a(B,) /T t_§p+1: et(B) oB

B:Bo

024(B) ee(B)
(el 5, )




63 H(B,)

1 Z((%t(ﬁ) 0sB) ", , (@) 82&(3/))

T &~ op opop
oet(B) Oet(B) o%et(B)
- E( 3t(B) / )‘
P B OB BB/ I,

_ (astas) oe1(B) )‘
P B B-Bo

SO rearranging terms
B ~ (4 |
T(B-8o) =~ (FHBy)) =960

SO

JT(B-B,)

-1
024(B) 0e4(B) |
oy N<0,63<E< B P >‘BB0>




Example
MA(1) (o = 0 and known)
Yi = €t + Ooe-1, €1 N.1.d. (0, G%)

Compute Go( (agtgs) 2ep) )‘ )
B=B,

In this case,

) - @) - 02D
Introduce
2(p) = - 4,

then the iteration above is

zi(B) = e-1(B) — 0z:-1(B)

and
Zt(BO) = &t-1 — QOZt—l(Bo)



This is an AR(1) for z(B,), so, using the Variance of
an AR(1),

ok
1-06§

1
oc(B) Oei(B) o6

o E( )‘ ) = —2 =1-63

0( B P o, o3 0

E(z:(B,))” =




Appendix

e Properties of the Correlogram Based
estimates and Maximum Likelihood
estimates

e Interpretation of the standard errors



Properties of the Correlogram
Based estimate and Maximum
Likelihood estimate

What does it mean to say that the Maximum
Likelihood estimate is more precise than the
Correlogram based estimate?

% Example 1. MA(1).

The series

w—Seriesl

- o
e

1 5 9 1317212529333741454953576165697377818589 93097

W N [N o [N N w IS

was generated as MA(1) with 6 = 0.5.

% If we pretend not to know 6, and we estimate it
as correlogram based or maximum likelihood
estimate,

Oc =0.35 0y = 0.43

so in this particular example Oy got closer to 6 (so,
it worked better).



% Example 2. 1000s MA(1), an experiment.

I took 1000 random series from the same process:

% the estimate Oy gets closer to 0.5 than 6 ¢ does
in 68.5% of the cases;

Y the standard error of the estimated values
O is 0.075, the standard error of the estimated
values Oc is 0.104.

% We can look at the whole sample distribution of
the estimates (there are two ways to represent it,
with histograms or with smooth functions). 0w
clusters more estimated values around 0.5, and
much less in points away from it.
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All this means that 0 is more precise than O¢ in
a statistical sense.




Interpretation of the standard errors
and application to testing

The standard errors can be seen as a
measure of the precision of the estimate,
and can be also used in testing.

* Example 1 (MA(1)). Consider the estimation of
the parameter 6 assuming that the true model is an
(invertible) MA(1). Compare the asymptotic
variance when a MA(1), a MA(2) and ARMA(1,1)
are used. Notice that 6¢;2 in the MA(2) is 0, and ¢o
in the ARMA(1,1) is 0.

Model  MA(1) MAQ2) ARMA(L1)

as.Var. (1-603) xUT UT 9—1(2)(1— 03) x UT

The asymptotic variance in the MA(1) model is
smaller. Heuristically, we may think that the
information is used only to estimate 0, instead of
dispersing it to estimate also 6> or ¢.



% Example 2 (MA(1)).

Suppose that a MA(1) model is estimated (via
ML/CML), with 100 observations, and 0 takes

value 0. 8.
1-63
T

(because we do not know 6p). The estimate takes

value =28 - 0.06.

is not observable

The standard error,

If we want to test Ho : {00 = 0} we use

6-06
A% N0
J1-03
so for example, to test
Ho : {00 =0.7y vs Ha : {00 # 0.7}

the test statistic under the null hypothesis takes
value 1.4003, so the null hypothesis is not rejected.




% Example 3 (MA(2)).

Suppose that a MA(2) model is estimated (via
ML/CML), with 100 observations, and 0, takes

value 0.8, 0, takes value 0.05.

1-65,
=

(because we do not know 0g;2). The estimate takes

value [|20%° _ 09,9875,

is not observable

The standard error,

If we want to test Hg : {6p1 = 0} we use

6 — 0o
m ) o
[1- 03,
Notice that this require knowledge of 0§, and this

not know not even under Hq: we can, however,
replace it by a consistent estimate (0>).

So for example, to test
Ho . {90;1 = 0.7} VS HA . {90;1 + 0.7}

the test statistic under the null hypothesis takes
value 1.0013, so the null hypothesis is not rejected.



% Example 4 (ARMA(1,1)). Suppose that an
ARMA(1,1) model is estimated (via ML/CML),
with 100 observations, and $ takes value 0.8, 0
takes value 0. 05.

If we want to test Ho : {¢o = ¢,00 = 0} we use the
Wald test statistic

T(?ﬁ—qﬁo 0 -0, )x
_ — 1~ -1

(1-¢3)"  (1+ pobo)™
(1+¢of0)™ (1-63)7

(a_%) 2
~ —d X2
0 — 0o

(i.e., the Wald test statistic is asymptotically y¢
distributed, with k equal to the number of
parameters being tested).

So for example, to test
Ho : {¢o =0.7,00 = 0.2}
VS
Ha : {¢o # 0.7, &/or 6o = 0.2}

the test statistic takes value 1.6730, so the null
hypothesis is not rejected with size 5% (c.v.5.99).



