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Chapter 7: Asymptotic properties of 

parametric estimates 

Topics: Asymptotic properties of the 

estimates based on the autocorrelation 

function; Asymptotic distribution of the 

OLS/CML estimates in an AR(p); Asymptotic 

distribution of (Pseudo) Maximum Likelihood 

estimates.  



Estimates limit properties
Limit properties of the Correlogram based
estimates, of the Maximum likelihood type
estimates (either the exact one, or the "conditional"
one) and the minRSS pseudo-maximum likelihood
estimate.

Let

Y t  c0  0;1Y t1 . . .0;pY tp

  t  0;1 t1 . . .0;q tq,

 t  iid0,0
2 

the roots of 1  0;1z . . .0;pzp  0 and of
1  0;1z . . .0;qzq  0 are all outside the unit
circle, and there is no common factor.

For Maximum Likelihood estimates, we also
assume  t  Nid0,0

2 ;

 For Conditional Maximum likelihood we also
assume  t  Nid0,0

2 , Yp, . . . , Y1 not random,

p  0, . . . ,pq1  0.



Let

0  c0,0;1, . . . ,0;p,0;1, . . . ,0;q 


be the set of parameters of interest (i.e., all the

parameters of the model except 0
2), and let


 be

one of the following estimates of 0

 Correlogram based (

C)

 Maximum likelihood types (

ML)

 Pseudo maximum likelihood (

PML)

(i.e.

C is the Correlogram based estimate of 0,


ML is any Maximum likelihood type estimate of

0,

PML is a minRSS Pseudo-Maximum likelihood

type estimate of 0).



Limit properties: consistency

Then

 p 0 as T  

i.e. as T  ,

 (any of


C, or of


ML or of


PML) is a consistent estimate of 0.

It also holds that

C

2 p 0
2,

ML

2 p 0
2 and


PML

2  0
2as T   (where


C

2 ,

ML

2 and

PML

2 are
the correlogram based, ML and PML estimates of
0

2, respectively).



Limit properties: asymptotic
normality

T

C  0 d N0,C 

T

ML  0 d N0,ML 

T

PML  0 d N0,ML 

as T  , T

  0 is asymptotically

normally distributed. Notice however the
dispersion is, in general, different.



 Both the matrices C and ML are positive
definite.

 The ML/PML estimate is at least as efficient the
Correlogram based one, i.e. C  ML is a positive
semidefinite matrix.

 The Correlogram based estimate and the PML
estimates of 0,1, ..., 0,p are as efficient as the
ML/PML estimates of them, if 0;1  0, . . . ,0;q  0
(ie the true model is AR(p)).

 If we are also interested in the estimation of 0
2,

0  c0,0;1, . . . ,0;p,0;1, . . . ,0;q,0
2 



let

ML be the exact ML estimate, then

T

ML  0 d N0,ML  The matrix ML is

often referred to as 1, where

  E 1
T
2

  0

is called information matrix.



As usual, the standard errors can be
seen as a measure of the precision
of the estimate, and can be also
used in testing.



Examples of ML:

AR1 : T

  0 d N0,1  0

2 

AR2 : T


1

2


0;1

0;2

d N 0,
1  0;2

2 0;11  0;2 

0;11  0;2  1  0;2
2

MA1 : T

  0 d N0,1  0

2 

MA2 : T


 1

 2


0;1

0;2

d N 0,
1  0;2

2 0;11  0;2 

0;11  0;2  1  0;2
2



ARMA1,1 : T







0

0

d N 0,
1  0

2 
1

1  00 
1

1  00 
1 1  0

2 
1

1

the last variance can be rewritten as

1  00

0  0 
2


1  0

2 1  00  1  0
2 1  0

2 

1  0
2 1  0

2  1  0
2 1  00 

These do not depend on 0
2;

The estimates in the AR1, MA1 are more
precise the stronger the dependence.



It is easy to derive the limit distribution in the AR
models: for example, AR1, consider the
Conditional maximum likelihood estimate (also
assume c0  0 and it is known)


 


t2

T
Y t1Y t


t2

T
Y t1

2



t2

T
Y t10Y t1   t 


t2

T
Y t1

2

 0 
1

T1


t2

T
Y t1 t

1
T1


t2

T
Y t1

2

then look at

T

  0 

T 1
T1


t2

T
Y t1 t

1
T1


t2

T
Y t1

2

Clearly (by a Law of Large Number)

1
T  1

t2

T

Y t1
2 p EY t1

2  
0

2

1  0
2

;

in T 1
T1


t2

T
Y t1 t, Y t1 t is not actually

independent, but it has similar properties, so, upon
noticing that

EY t1 t   EY t1E t   0,

VY t1 t   VY t1V t  
0

2

1  0
2
0

2,



by a Central Limit Theorem

T  1 1
T  1

t2

T

Y t1 t d N 0,
0

2

1  0
2
0

2

combining the two, (using also the fact that
T / T  1  1)

T

  0 d N 0,

0
2

10
2
0

2

0
2

10
2

2
 N0, 1  0

2 

This can be generalised to ARp,

T


1

. . .

p



0;1

. . .

0;p

d N0, Vp
1 



To prove the general result for the limit
distribution, consider an approximate Taylor

expansion of 2 1

T
g

 in 0,

2 1
T

g



 0
2 1

T
g0   0

2 1
T

H0  T

  0

We know that

g

  0;

0
2 1

T
g0   

1
T

tp1

T

 t
 t


0

 d N 0,0
2E

 t


 t




0



0
2 1

T
H0 

  1
T 

tp1

T
 t


 t




  t
2 t

 
0

 p E
 t


 t




  t
2 t

  0

 E
 t


 t




0

so rearranging terms

T

  0  1

T
H0 

1 1
T

g0 

so

T

  0

d N 0,0
2 E

 t


 t




0

1



Example
MA1 (0  0 and known)

Y t   t  0 t1,  t N. i. d. 0,0
2 

Compute 0
2 E

t



t





0

1

.

In this case,

 t


  t1  
 t1


Introduce

z t  
 t


,

then the iteration above is

z t   t1  z t1

and

z t0    t1  0z t10 



This is an AR(1) for z t0 , so, using the Variance of

an AR(1),

Ez t0 
2


0
2

1  0
2

and

0
2 E

 t


 t




0

1


0

2

0
2

10
2

 1  0
2
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Properties of the Correlogram
Based estimate and Maximum

Likelihood estimate
What does it mean to say that the Maximum
Likelihood estimate is more precise than the
Correlogram based estimate?

 Example 1. MA(1).

The series

-3

-2

-1

0

1

2

3

4

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Series1

was generated as MA(1) with   0.5.

 If we pretend not to know , and we estimate it
as correlogram based or maximum likelihood
estimate,


C  0.35,


ML  0. 43

so in this particular example

ML got closer to  (so,

it worked better).



 Example 2. 1000s MA(1), an experiment.

I took 1000 random series from the same process:

 the estimate

ML gets closer to 0.5 than


C does

in 68.5% of the cases;

 the standard error of the estimated values

ML is 0.075, the standard error of the estimated

values

C is 0.104.

 We can look at the whole sample distribution of
the estimates (there are two ways to represent it,

with histograms or with smooth functions).

ML

clusters more estimated values around 0.5, and
much less in points away from it.
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All this means that

ML is more precise than


C in

a statistical sense.



Interpretation of the standard errors
and application to testing

The standard errors can be seen as a
measure of the precision of the estimate,
and can be also used in testing.

 Example 1 (MA(1)). Consider the estimation of
the parameter  assuming that the true model is an
(invertible) MA(1). Compare the asymptotic
variance when a MA(1), a MA(2) and ARMA(1,1)
are used. Notice that 0;2 in the MA(2) is 0, and 0

in the ARMA(1,1) is 0.

Model MA(1) MA(2) ARMA(1,1)

as. Var. 1  0
2  1/T 1/T 1

0
2 1  0

2   1/T

The asymptotic variance in the MA(1) model is
smaller. Heuristically, we may think that the
information is used only to estimate , instead of
dispersing it to estimate also 2 or .



 Example 2 (MA(1)).

Suppose that a MA(1) model is estimated (via

ML/CML), with 100 observations, and

 takes

value 0. 8.

The standard error,
10

2

T
is not observable

(because we do not know 0). The estimate takes

value 10.82

100
 0.06.

If we want to test H0 : 0   we use

T


  0

1  0
2

d N0,1

so for example, to test

H0 : 0  0.7 vs HA : 0  0.7

the test statistic under the null hypothesis takes
value 1. 4003, so the null hypothesis is not rejected.



 Example 3 (MA(2)).

Suppose that a MA(2) model is estimated (via

ML/CML), with 100 observations, and

 1 takes

value 0. 8,

 2 takes value 0. 05.

The standard error,
10,2

2

T
is not observable

(because we do not know 0;2). The estimate takes

value 10.052

100
 09. 9875.

If we want to test H0 : 0;1   we use

T


  0;1

1  0;2
2

d N0,1

Notice that this require knowledge of 0;2
2 , and this

not know not even under H0: we can, however,

replace it by a consistent estimate (

 2).

So for example, to test

H0 : 0;1  0.7 vs HA : 0;1  0. 7

the test statistic under the null hypothesis takes
value 1. 0013, so the null hypothesis is not rejected.



 Example 4 (ARMA(1,1)). Suppose that an
ARMA(1,1) model is estimated (via ML/CML),

with 100 observations, and

 takes value 0.8,




takes value 0. 05.

If we want to test H0 : 0  ,0   we use the
Wald test statistic

T

  0


  0 

1  0
2 
1

1  00 
1

1  00 
1 1  0

2 
1

1 1




  0

  0

d 2
2

(i.e., the Wald test statistic is asymptotically k
2

distributed, with k equal to the number of
parameters being tested).

So for example, to test

H0 : 0  0.7,0  0.2

vs

HA : 0  0.7, &/or 0  0.2

the test statistic takes value 1.6730, so the null
hypothesis is not rejected with size 5% (c.v. 5.99).


