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Topics: Brownian motion, Functional central 

limit theorem, Limit properties of the 

sample mean of a random walk, Limit 

properties of the OLS estimate of the 

autoregressive parameter in a random walk, 

Limit properties of the t statistic associated 

to the OLS estimate of the autoregressive 

parameter in a random walk, The Dickey 

Fuller test for a unit root in a random walk: 

Case 1, The Dickey Fuller test for a unit root 

in a random walk: Case 2, The Dickey Fuller 

test for a unit root in a random walk with 

drift: Case 3, The Dickey Fuller test for a unit 

root in a random walk with drift: Case 4, 

Choice of the unit root test, Augmented 

Dickey Fuller test for a unit root when the 

disturbances have a stationary AR(p) 

structure: Case 1, Case 2, Case 3, Case 4, 

Choice of the order p in the ADF test, 

Phillips-Perron tests for a unit root in a 

generic I(1) process 



We saw that

Y t    Y t1   t,  t w. n. 0,2 , when t  0

Y t  0 when t  0

has different properties depending on whether
  1 or ||  1.

We want a test to distinguish between the two
cases.

Introduce

Brownian motion (heuristic)
A Browian motion W.  is a continuous time
stochastic process that associates to each date
t  0, 1 a value Wt such that
 W0  0
 for any date 0  t1  te . . . tk  1, the
differences Wt2  Wt1 , Wt3  Wt2 , ...,
Wtk  Wtk1  are normally independently
distributed random variables such that, for s,
0  t  s  1,

Ws Wt  N0, s  t

 Wt is continous with probability 1



Introduce the operator . , such that x returns
the integer part of a number x. Introduce

XTr  1
T 

t1

rT

 t,  t i.i.d.0,2 , for r  0,1

Functional Central Limit Theorem
(heuristic)

T XT. / d W. 

(here and after, these limits are as T  )

(The FCLT links functions on 0,1: we should
define what convergence in distribution means,
there. It turns out that the nature of the
convergence, and even the notation, have to be
generalised; however, we do not discuss this).

The Central Limit Theorem,

T 1
T 

t1

T

 t d N0,2 

is a byproduct of the FCLT:

T XT1/ d W1.

(just set r  1 in the FCLT)



Now, we can see what happens to
the sample mean of an I1 process

Y t  Y t1   t,  t i. i. d. 0,2 , when t  0

Y t  0 when t  0

We can express Y1,..., Y t as a function of XTr:

XT.  

0 for 0  r  1/T

Y1/T for 1/T  r  2/T

Y2/T for 2/T  r  3/T

. . .

Y t/T for t/T  r  t  1/T

. . .

YT1/T for T  1/T  r  1

YT/T for r  1

XT.  is a step function:
for t/T  r  t  1/T, XT.   Y t/T.



For any constant c,


t/T

t1/T

cdr  c|r| t/T
t1/T  c 1

T
.

In the same way, we can compute


t/T

t1/T

XTrdr  Y t/T  1/T  Y t/T2.

Then,
Y0/T2 . . .Y t/T2 . .YT1/T2

 
0/T

1/T
XTrdr . . 

t/T

t1/T
XTrdr . . 

T1/T

T/T
XTrdr

ie.

1
T2 

t1

T

Y t1  
0

1

XTrdr

From the FCLT we know that

T XT. / d W. ,

so

T 1
T2 

t1

T

Y t1/  
0

1

T XTr/dr d 
0

1

Wrdr



What is 
0

1
Wrdr? It is a random variable, obtained

by reweighting and averaging normally
distributed random variables.

In particular, 
0

1
Wrdr is a N0,1/3.

We can now conclude

1
T

1
T 

t1

T

Y t1 d  
0

1

Wrdr,

which is N0, 1/32 .

Since

1
T

Y  1
T

1
T 

t1

T

Y t

 1
T

1
T 

t0

T1

Y t  1
T

1
T

YT  1
T

1
T

Y0

 1
T

1
T 

t1

T

Y t1  1
T

1
T

YT  1
T

1
T

Y0,

notice that Y0  0, and that 1

T

1
T

YT p 0, so

1
T

Y d  
0

1

Wrdr

as well.



A test to check if Y t is a random walk:

Estimate  via OLS in

Y t  Y t1   t,  t i. i. d. 0,2 , when t  0

Y t  0 when t  0

When   1,


 


t2

T
Y tY t1


t2

T
Y t1

2



t2

T
Y t1   t Y t1


t2

T
Y t1

2

 1 


t2

T
 tY t1


t2

T
Y t1

2

In order to find out more about
t2

T
Y t1

2 ,

XT. 
2 

0 for 0  r  1/T

Y1
2/T2 for 1/T  r  2/T

Y2
2/T2 for 2/T  r  3/T

. . .

Y t
2/T2 for t/T  r  t  1/T

. . .

YT1
2 /T2 for T  1/T  r  1

YT
2 /T2 for r  1



XT. 
2 is a step function: for t/T  r  t  1/T,

XT. 
2  Y t

2/T2, so


t/T

t1/T

XTr
2dr  Y t

2/T2  1/T  Y t
2/T3.

Then,
Y0

2/T3 . . . .Y t
2/T3 . . .YT1

2 /T3

 
0/T

1/T
XTr

2dr . . . 
t/T

t1/T
XTr

2dr . . .

 
T1/T

T/T
XTr

2dr

i.e.

1
T3 

t1

T

Y t1
2  

0

1

XTr
2dr

From the FCLT, we can immediately derive

TXT. 
2/2 d W. 2,

(Wr2 is a well defined random variable, because
Wr2/r is a 1

2) so

T 1
T3 

t1

T

Y t1
2 /2  

0

1

TXTr
2/2dr d 

0

1

Wr2dr,

so we can conclude

1
T2 

t1

T

Y t1
2  

0

1

TXTr
2dr d 2 

0

1

Wr2dr.



In order to find out more about
t2

T
 tY t1,

consider

Y t
2  Y t1   t 

2  Y t1
2   t

2  2Y t1 t

so, rearranging terms,

Y t
2  Y t1

2   t
2  2Y t1 t.

Summing over t, t  1, . . . , T,


t1

T

Y t
2 

t1

T

Y t1
2 

t1

T

 t
2  2

t1

T

Y t1 t

and


t1

T

Y t
2 

t1

T

Y t1
2

 Y1
2  Y2

2 . . .Y t
2 . . .YT1

2  YT
2 

 Y0
2  Y1

2 . . .Y t1
2 . . .YT2

2  YT1
2 

 YT
2  Y0

2  YT
2

because Y0  0, so


t1

T

Y t1 t  1
2

YT
2 

t1

T

 t
2 .



Normalising by T,

1
T 

t1

T

Y t1 t  1
2

1
T

YT
2  1

T 
t1

T

 t
2 .

Since

1
T

YT
2  TXT1

2 d 2W12

(by the CLT), and

1
T 

t1

T

 t
2 p 2

(by the law of large numbers) then

1
T 

t1

T

Y t1 t d
1
2
2 W12  1 .

Summarising,

T

  1 

1
T


t2

T
 tY t1

1

T2  t2

T
Y t1

2
d

1
2

W12  1


0

1
Wr2dr





 is still consistent (


 p 1)

 indeed,

 is "superconsistent" (see the rate T

rather then the usual T )


1
2

W121


0

1
Wr2dr

is not a normal distribution

 in small samples (and  t Nid0,2 ),



underestimates 1 (in a probabilistic sense)


1
2

W121


0

1
Wr2dr

is skewed to the left

Testing

H0 :   1 vs HA : ||  1

in

Y t  Y t1   t,  t i. i. d. 0,2  when t  0

Y t  0 when t  0

the 5% critical value for the T

  1 statistic is

8. 1.



t statistic:

t 


  



where 
2
 s2


t2

T
Y t1

2

and s2  1
T  1

t2

T

Y t 

Y t1 

2

When ||  1,

rewrite

t 
T

  

T
.

Look at T first.

again,


 p , so s2  1

T  1

t2

T

Y t 

Y t1 

2 p 2.

Since we already saw that

1
T2 

t2

T

Y t1
2 d 2 

0

1

Wr2dr,

then



T2
2
 s2

1

T2  t2

T
Y t1

2

 d
2

2 
0

1
Wr2dr

 1


0

1
Wr2dr

and T  d
1


0

1
Wr2dr

As for the numerator,

T

  1 d

1
2

W12  1


0

1
Wr2dr

summarising,

t 
T

  1

T
, t d

1
2

W12  1


0

1
Wr2dr

.




1
2

W121


0

1
Wr2dr

is not normally distributed; it is

skewed to the left.

Testing H0 :   1 vs. HA : ||  1 with a t
statistic using a 5% significance level, the critical
value is 1.95.

Compare with the case ||  1:

 p ,

T
2
 s2

1
T


t2

T
Y t1

2
p

2

2

12

 1  2

so

t 
T 

  

T 
, t d N0,1.

Then testing H0 :    vs. HA :    (when

||  1) with a t statistic, with a 5% significance
level, the critical value is 1.65.



Which unit root test?
Recall the model

Y t  Y t1   t,  t i. i. d. 0,2  when t  0

Y t  0 when t  0

and   1 or ||  1;

let

 be the OLS estimate of :

since

 p , we can use the T


  1 or the t

statistic to test for a unit root testing H0 :   1
vs HA : ||  1.

However, when ||  1, so far we only considered
processes Y t that have EY t   0. How about
processes that are mean reverting and yet the
mean to which they revert is not zero? Processes of
this kind would be generated by

Y t    Y t1   t with   0, ||  1

( t i. i. d. 0,2 ).

If this is the true model and we omit , estimating


 


t2

T
Y t1Y t


t2

T
Y t1

2
instead, then


 is no longer a

consistent estimate of : however,

 converges in

probability to a number smaller than one, so we
can still rely on the T


  1 or the t statistics to

effectively test for a unit root.



"Case 1"

Estimate  via OLS in

Y t  Y t1   t

assuming  t i. i. d. 0,2 .

When   1,

T

  1 d

1
2

W12  1


0

1
Wr2dr

, t d

1
2

W12  1


0

1
Wr2dr

 Test:

Test H0 :   1 vs. HA : ||  1 with a t
statistic (critical value is 1.95 at 5% significance
level) (can also use the T


  1 statistic, the 5%

critical value is 8.1).



"Case 2"

Estimate ,  via OLS in

Y t    Y t1   t

assuming  t i. i. d. 0,2 .

Here

 is a consistent estimate of  regardless of 

and .

When   1, in order to have Y t as a random walk
(i.e., no linear trend) we also need   0: we take it
into account when computing the limit

distribution of T

  1 and of the t statistic



1


.

When   0,   1:

T

  1 d

1
2

W12  1 W1 
0

1
Wrdr


0

1
Wr2dr  

0

1
Wrdr

2

t d

1
2

W12  1 W1 
0

1
Wrdr


0

1
Wr2dr  

0

1
Wrdr

2



the limit distributions of T

  1 and of t when

  0 are not normal; they are also even more
asymmetric than in Case 1

the limit distribution of T

 when   0 is not

normal

 Test:

Test H0 :   1 vs. HA : ||  1 with a t
statistic (critical value is 2.86 at 5% significance
level) (can use the T


  1 statistic, the 5% critical

value would be 14.1) (the limit distributions of
the t and of the T


  1 statistics are computed

under the assumption   0).

Joint test, H0 :   0,   1 vs

HA :   0 &/or   1 (the F test statistic

associated to this test does not converge to
1/2 2

2: the 5% critical value is 4.59, as opposed to
2.99).



Which test then?
If Y t does not have a unit root and EY t   0, in
Case 1 we overestimate  (in a probabilistic sense)
a bit: the test will still be useful to detect a unit
root, but it may have less power than a test in
which a consistent estimate of  is used.

On the other hand, if If Y t does not have a unit root
and EY t   0, then the two estimates of  (using
Case 2 or Case 1) have the same limit distribution:
however, the critical value for case 2 is smaller
(2.86 instead of 1.95), so in a finite sample there
will be a higher proportion of Type 2 errors when
using Case 2.

Finally, also notice that the t test has "one-sided"
alternative, as opposed to the "two-sided"
alternatives in the joint test in Case 2: one-sided
alternative use more information (in this case, the
knowledge that  is not bigger than 1) and this
pays off because it gives more power.

The choice between the Case 1 and the Case 2
model then depends on how confident we can be
of   0 if ||  1: if we have no reasons to expect
  0 if ||  1, Case 2 should be preferred.



What if there is a linear trend?
If   0 in Y t    Y t1   t (t  0), by repeated
substitution

Y t  t 
j1

t

 j,

so the process has a linear trend, together with the
random walk

j1

t
 j.



"Case 3"

estimate ,  in

Y t    Y t1   t

assuming  t i. i. d. 0,2 .

When   0,   1

T3/2

  1 d N 0, 12

2
2 , t d N0,1.

even faster rate of convergence, and limit
normality

 Test:

Test H0 :   1 vs. HA : ||  1 with a
T3/2


  1 or a t statistic (the limit distributions of

the T3/2

  1 and of the t statistics are computed

under the assumption   0)



"Case 4"

estimate , ,  in

Y t    Y t1  t   t

assuming  t i. i. d. 0,2 .

When   1,   0:

 the T

  1 and the t statistics to test

H0 :   1 vs HA : ||  1 do not converge to a
N0,1.

 Test:

Test H0 :   1 vs. HA : ||  1 with a t
statistic (critical value is 3.41 at 5% significance
level) (can also use the T


  1 statistic, the 5%

critical value is 21.8) (the limit distributions of the
t and of the T


  1 statistics are computed under

the assumption   0).

Joint test, H0 :   1,   0 vs

HA :   1 &/or   0 (the F test statistic

associated to this test does not converge to 1/2 2
2:

the 5% critical value is 6.25, as opposed to 2.99) .

Summarising
Case 4 seems to be the natural model when the
data may have a linear trend.



Augmented Dickey Fuller test
(ADF)
Allow for a more general dynamic structure:

Y t  Y t1  u t, when t  0

Y t  0 when t  0

what if u t is (stationary) ARp  1 (Eu t   0),
instead of an independent process?

Let

u t 
j1

p1

 ju tj   t, where  t is i.i.d.0,2 

notice that u t is observable, because

u t  Y t

so

Y t  Y t1  u t  Y t1 
j1

p1

 ju tj   t

 Y t1 
j1

p1

 jY tj   t



Case 1

Estimate (via OLS) , 1, .., p1, in the model

Y t  Y t1 
j1

p1

 jY tj   t

( t i. i. d. 0,2 ).

When   1 :

 the t statistic to test H0 :   1 vs
HA : ||  1 behaves asymptotically as in Case 1
of the basic D-F test (i.e. the limit properties of




are not affected by the knowledge, or lack of, of 1,
.., p1)

 the limit properties of

 1, ..,


 p1 are not affected

by the knowledge, or lack of, of , so the limit

properties of

 1, ..,


 p1 are the same ones as those

of the OLS estimates in the (stationary) AR(p  1)
model

Y t 
j1

p1

 jY tj   t.



Case 2

Estimate (via OLS) , , 1, .., p1, in the model

Y t    Y t1 
j1

p1

 jY tj   t

( t i. i. d. 0,2 ).

When   0,   1:

 the t statistic to test H0 :   1 vs
HA : ||  1 and the F statistic to jointly test
H0 :   0,   1 vs HA :   0 &/or   1

behave asymptotically as in Case 2 of the basic D-F
test (i.e. the limit properties of


 and


 are not

affected by the knowledge, or lack of, of 1, .., p1)

 the limit properties of

 1, ..,


 p1 are not affected

by the knowledge, or lack of, of  or of , so the

limit properties of

 1, ..,


 p1 are the same ones as

those of the OLS estimates in the (stationary)
AR(p  1) model

Y t 
j1

p1

 jY tj   t.



Case 3

Estimate (via OLS) , , 1, .., p1, in the model

Y t    Y t1 
j1

p1

 jY tj   t

( t i. i. d. 0,2 )

When   0,   1:

 the t statistic to test H0 :   1 vs
HA : ||  1 behaves asymptotically as in Case 3
of the basic D-F test (i.e. the limit properties of




and

 are not affected by the knowledge, or lack of,

of 1, .., p1)

 the limit properties of

 1, ..,


 p1 are not affected

by the knowledge, or lack of, of  and of , so the

limit properties of

 1, ..,


 p1 are the same ones as

those of the OLS estimates in the (stationary)
AR(p  1) model

Y t   
j1

p1

 jY tj   t.



Case 4

Estimate (via OLS) , , 1, .., p1, in the model

Y t    Y t1  t 
j1

p1

 jY tj   t

( t i. i. d. 0,2 )

When   0,   1:

 the t statistic to test H0 :   1 vs
HA : ||  1 and the F statistic to jointly test
H0 :   1,   0 vs HA :   1 &/or   0

behave asymptotically as in Case 4 of the basic D-F

test (the limit properties of

, of


 and of


 are not

affected by the knowledge, or lack of, of 1, .., p1).

 the limit properties of

 1, ..,


 p1 are not affected

by the knowledge, or lack of, of , of  and of , so

the limit properties of

 1, ..,


 p1 are the same ones

as those of the OLS estimates in the (stationary)
AR(p  1) model

Y t   
j1

p1

 jY tj   t.



Summarising:

once that the lags Y t1,...,Y tp1 have been
added to the model, we can just test if   1 using
the t or the F statistic, and refer to the "basic" (ie,
with no lags) case for the limit distributions.

This is a very useful result, because it means that
we do not have to adjust the limit distributions to
the structure of u t: the adjustment is made
automatically by the t or by the F statistic.

The result that the limit properties of

 1, ..,


 p1

are the same ones as those of the estimates in the
(stationary) AR(p  1) and therefore do not depend
on  is very useful as well, because we can use it to
determine the order p  1 of the AR(p  1) structure
when indeed p  1 is unkown.

If we don’t know p  1, we can select the order of
the AR model for u t using an information criterion;
otherwise, we may select a tentative order, say,

pmax (obviously, pmax p), and test if

 p, . . . ,


 pmax1

are not statistically significant.



The hypotesis of an AR(p  1) model for u t is rather
general, because it corresponds to an ARp model
for Y t (at least, when no linear trends are present).
We can see it by looking, for example, at the Case 1
representation

Y t  Y t1 
j1

p1

 jY tj   t

Y t  Y t1 
j1

p1

 jY tj   t

Using the lag operator, replacing
Y t1 by LY t,  by 1  L and Y tj by L jY t,

Y t  Y t1 
j1

p1

 jY tj

 1  L 
j1

p1

 j1  LL j Y t

and



1  L 
j1

p1

 j1  LL j

 1  L  1  L
j1

p1

 jL j

 1  L  1  L1L  1  L2L2 . . .

 1  Lp1Lp1

 1  L  1L  1L2  2L2  2L3 . . .

 p1Lp1  p1Lp

 1    1 L  1  2 L2 . . .

 p2  p1 Lp1  p1Lp

 1    1 L  2  1 L2 . . .

 p1  p2 Lp1  p1 Lp

so

1    1

2  2  1

. . .

p1  p1  p2

p  p1



We can also notice that the  j are such that

1  2 . . .p1  p

   1  2  1 . . .p1  p2  p1

 

so

when   1,

1  2 . . .p1  p  1.



An alternative regression for
DF/ADF
Consider again, for example, the regression model
for Case 2:

Y t    Y t1 
j1

p1

 jY tj   t

( t i. i. d. 0,2 ). Subctracting Y t1 by both sides, we
get

Y t      1Y t1 
j1

p1

 jY tj   t

This model is equivalent to the previous one, but
instead of testing H0  1 we then test
H0  1  0.

The test is equivalent to the previous one (so, it
also uses the same limit distribution).

Of course, it is also possible to adapt the other
cases (Case 1 to Case 4) to test H0  1  0
instead.



Phillips and Perron test (PP)
Allow for a more general dynamic structure:

Y t  Y t1  u t, when t  0

Y t  0 when t  0

what if u t is (stationary and invertible) ARMAp, q
(with Eu t   0), instead of an independent
process?

Case 1

Let

 


t2

T
Y tY t1


t2

T
Y t1

2
,

T

  1 d

1
2

W12  1


0

1
Wr2dr

 

where  is a shift term.

This can be consistently estimated: call that
estimate


, we can test for a unit root using

T

  1 


 d

1
2

W12  1


0

1
Wr2dr



Case 2, Case 3 and Case 4 work in the same way
(the shift term  may be different).

The same considerations for the choice Case 1 vs
Case 2, and Case 3 vs Case 4 apply.



 is still "superconsistent" (compare with ||  1:


 would in general inconsistent, in this case)

 the PP test works in a more general set up than
the ADF

 the ADF has more power than the PP if p is
known; otherwise, the performance of the two tests
are not much different.



Appendix 
 

• The distributions of the Dickey and 

Fuller t statistics 

 

• Which Case in the unit root test? 



The distributions of the Dickey and
Fuller t statistics
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-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Note: Generated using 5000 repetitions and
T  1000.

Note: Black, N0, 1; Blue, Case 1; Red, Case 2,
Green Case 4.



Which Case in the unit root test?
Case 1 and Case 2 both have the same null
hypothesis,

Y t  Y t1   t, i.e.,   1.

If indeed   1, then both tests will NOT Reject the
null hypothesis with probability 95% (as we set
the size to 5%). So, we can only choose between the
two tests if we look at what happens when in fact
the null hypothesis is not correct and ||  1.

Two alternatives are possible: "c  0", i.e,
Y t  Y t1   t, and "c  0", i.e. Y t  c  Y t1   t.



 c  0. In this example, we used T  100 and
  0. 85:
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The BLUE distribution is the distribution of the
standardized t statistic if Case 1 is estimated, and
the RED if Case 2 is estimated (note that the
theoretical limit distribution of


 is the same, the

apparent difference in the distribution of t is only
due to the sample variability).

The critical value for Case 1 is 1.95, and in our
example, 97.9% was below it (i.e., in 97.9% of the
samples we correctly concluded that ||  1);

The critical value for Case 2 is 2.86, and in our
example, 67.7% was below it (i.e., in 67.7% of the
samples we correctly concluded that ||  1).



 c  0. The distribution of the estimate of  and of
the standardized t under Case 2 are unaffected.
Under case 1, however,  is no longer consistently
estimated. Here we kept T  100 and   0.85 but
set c  2.5:
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The BLUE distribution is for the standardized t
statistic if Case 1 is estimated, and the RED if Case
2 is estimated (note that the theoretical limit
distributions of t are no longer same; the RED
distribution is the same as in the case with c  0).

Case 1: in our example in 29.3% of the samples we
correctly concluded ||  1;

Case 2: in our example in 67.7% of the samples we
correctly concluded ||  1.


