

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Economia, Management e Metodi Quantitativi



### Academic Year 2019-2020 Time Series Econometics Fabrizio Iacone

#### Chapter 10: Unit Root testing

**Topics: Brownian motion, Functional central** limit theorem, Limit properties of the sample mean of a random walk, Limit properties of the OLS estimate of the autoregressive parameter in a random walk, Limit properties of the t statistic associated to the OLS estimate of the autoregressive parameter in a random walk, The Dickey Fuller test for a unit root in a random walk: Case 1, The Dickey Fuller test for a unit root in a random walk: Case 2, The Dickey Fuller test for a unit root in a random walk with drift: Case 3, The Dickey Fuller test for a unit root in a random walk with drift: Case 4, Choice of the unit root test, Augmented Dickey Fuller test for a unit root when the disturbances have a stationary AR(p) structure: Case 1, Case 2, Case 3, Case 4, Choice of the order p in the ADF test, Phillips-Perron tests for a unit root in a generic I(1) process

We saw that

$$Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t, \ \varepsilon_t \ w. n. (0, \sigma^2), \text{ when } t > 0$$

 $Y_t = 0$  when  $t \le 0$ 

has different properties depending on whether  $\rho = 1$  or  $|\rho| < 1$ .

We want a test to distinguish between the two cases.

Introduce

#### **Brownian motion (heuristic)**

A Browian motion W(.) is a continuous time stochastic process that associates to each date  $t \in [0,1]$  a value W(t) such that  $\bigstar W(0) = 0$  $\bigstar$  for any date  $0 \le t_1 < t_e < ... < t_k \le 1$ , the differences  $W(t_2) - W(t_1)$ ,  $W(t_3) - W(t_2)$ , ...,  $W(t_k) - W(t_{k-1})$  are normally independently distributed random variables such that, for *s*,  $0 \le t < s \le 1$ ,

 $W(s) - W(t) \sim N(0, s - t)$ 

★ W(t) is continous with probability 1

Introduce the operator  $[.]^*$ , such that  $[x]^*$  returns the integer part of a number x. Introduce

$$X_T(r) = \frac{1}{T} \sum_{t=1}^{[rT]^*} \varepsilon_t, \varepsilon_t \text{ i.i.d.}(0, \sigma^2), \text{ for } r \in [0, 1]$$

### Functional Central Limit Theorem (heuristic)

 $\sqrt{T} X_T(.) / \sigma \rightarrow_d W(.)$ 

(here and after, these limits are as  $T \rightarrow \infty$ )

(The FCLT links functions on [0, 1]: we should define what convergence in distribution means, there. It turns out that the nature of the convergence, and even the notation, have to be generalised; however, we do not discuss this).

The Central Limit Theorem,

$$\sqrt{T} \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t \rightarrow_d N(0, \sigma^2)$$

is a byproduct of the FCLT:

$$\sqrt{T}X_T(1)/\sigma \rightarrow_d W(1).$$

(just set r = 1 in the FCLT)

### Now, we can see what happens to the sample mean of an I(1) process

$$Y_t = Y_{t-1} + \varepsilon_t, \ \varepsilon_t \ i. i. d. \ (0, \sigma^2), \ \text{when } t > 0$$
$$Y_t = 0 \text{ when } t \le 0$$

We can express  $Y_1, ..., Y_t$  as a function of  $X_T(r)$ :

$$X_{T}(.) = \begin{cases} 0 \text{ for } 0 \leq r < 1/T \\ Y_{1}/T \text{ for } 1/T \leq r < 2/T \\ Y_{2}/T \text{ for } 2/T \leq r < 3/T \\ \dots \\ Y_{t}/T \text{ for } t/T \leq r < (t+1)/T \\ \dots \\ Y_{T-1}/T \text{ for } (T-1)/T \leq r < 1 \\ Y_{T}/T \text{ for } r = 1 \end{cases}$$

 $X_T(.)$  is a step function: for  $t/T \le r < (t+1)/T$ ,  $X_T(.) = Y_t/T$ . For any constant *c*,

$$\int_{t/T}^{(t+1)/T} c dr = c |r|_{t/T}^{(t+1)/T} = c \frac{1}{T}.$$

In the same way, we can compute

$$\int_{t/T}^{(t+1)/T} X_T(r) dr = Y_t/T * 1/T = Y_t/T^2.$$

Then,

$$Y_0/T^2 + \ldots + Y_t/T^2 + \ldots + Y_{T-1}/T^2$$
  
=  $\int_{0/T}^{1/T} X_T(r) dr + \ldots + \int_{t/T}^{(t+1)/T} X_T(r) dr + \ldots + \int_{(T-1)/T}^{T/T} X_T(r) dr$ 

ie.

$$\frac{1}{T^2} \sum_{t=1}^T Y_{t-1} = \int_0^1 X_T(r) dr$$

From the FCLT we know that

$$\sqrt{T}X_T(.)/\sigma \rightarrow_d W(.),$$

SO

$$\sqrt{T} \frac{1}{T^2} \sum_{t=1}^T Y_{t-1} / \sigma = \int_0^1 \sqrt{T} X_T(r) / \sigma dr \rightarrow_d \int_0^1 W(r) dr$$

What is  $\int_0^1 W(r) dr$ ? It is a random variable, obtained by reweighting and averaging normally distributed random variables. In particular,  $\int_0^1 W(r) dr$  is a N(0, 1/3).

We can now conclude

$$\frac{1}{\sqrt{T}} \frac{1}{T} \sum_{t=1}^{T} Y_{t-1} \rightarrow_d \sigma \int_0^1 W(r) dr,$$

which is  $N(0, 1/3\sigma^2)$ .

Since

$$\begin{aligned} \frac{1}{\sqrt{T}} \overline{Y} &= \frac{1}{\sqrt{T}} \frac{1}{T} \sum_{t=1}^{T} Y_t \\ &= \frac{1}{\sqrt{T}} \frac{1}{T} \sum_{t=0}^{T-1} Y_t + \frac{1}{\sqrt{T}} \frac{1}{T} Y_T - \frac{1}{\sqrt{T}} \frac{1}{T} Y_0 \\ &= \frac{1}{\sqrt{T}} \frac{1}{T} \sum_{t=1}^{T} Y_{t-1} + \frac{1}{\sqrt{T}} \frac{1}{T} Y_T - \frac{1}{\sqrt{T}} \frac{1}{T} Y_0, \end{aligned}$$

notice that  $Y_0 = 0$ , and that  $\frac{1}{\sqrt{T}} \frac{1}{T} Y_T \rightarrow_p 0$ , so  $\frac{1}{\sqrt{T}} \overline{Y} \rightarrow_d \sigma \int_0^1 W(r) dr$ 

as well.

A test to check if  $Y_t$  is a random walk: Estimate  $\rho$  via OLS in

 $Y_t = \rho Y_{t-1} + \varepsilon_t, \ \varepsilon_t \ i. i. d. \ (0, \sigma^2), \text{ when } t > 0$  $Y_t = 0 \text{ when } t \le 0$ 

When  $\rho = 1$ ,

$$\widehat{\rho} = \frac{\sum_{t=2}^{T} Y_t Y_{t-1}}{\sum_{t=2}^{T} Y_{t-1}^2} = \frac{\sum_{t=2}^{T} (Y_{t-1} + \varepsilon_t) Y_{t-1}}{\sum_{t=2}^{T} Y_{t-1}^2}$$
$$= 1 + \frac{\sum_{t=2}^{T} \varepsilon_t Y_{t-1}}{\sum_{t=2}^{T} Y_{t-1}^2}$$

In order to find out more about  $\sum_{t=2}^{T} Y_{t-1}^2$ ,

$$X_{T}(.)^{2} = \begin{cases} 0 \text{ for } 0 \leq r < 1/T \\ Y_{1}^{2}/T^{2} \text{ for } 1/T \leq r < 2/T \\ Y_{2}^{2}/T^{2} \text{ for } 2/T \leq r < 3/T \\ \dots \\ Y_{t}^{2}/T^{2} \text{ for } t/T \leq r < (t+1)/T \\ \dots \\ Y_{T-1}^{2}/T^{2} \text{ for } (T-1)/T \leq r < 1 \\ Y_{T}^{2}/T^{2} \text{ for } r = 1 \end{cases}$$

$$X_T(.)^2$$
 is a step function: for  $t/T \le r < (t+1)/T$ ,  
 $X_T(.)^2 = Y_t^2/T^2$ , so  
 $\int_{t/T}^{(t+1)/T} X_T(r)^2 dr = Y_t^2/T^2 * 1/T = Y_t^2/T^3.$ 

Then,

$$Y_0^2/T^3 + \dots + Y_t^2/T^3 + \dots + Y_{T-1}^2/T^3$$
  
=  $\int_{0/T}^{1/T} X_T(r)^2 dr + \dots + \int_{t/T}^{(t+1)/T} X_T(r)^2 dr + \dots$   
+  $\int_{(T-1)/T}^{T/T} X_T(r)^2 dr$   
i.e.

$$\frac{1}{T^3} \sum_{t=1}^T Y_{t-1}^2 = \int_0^1 X_T(r)^2 dr$$

From the FCLT, we can immediately derive  $TX_T(.)^2/\sigma^2 \rightarrow_d W(.)^2$ ,  $(W(r)^2$  is a well defined random variable, because

 $W(r)^{2}/r$  is a  $\chi_{1}^{2}$  so

$$T\frac{1}{T^3}\sum_{t=1}^T Y_{t-1}^2/\sigma^2 = \int_0^1 TX_T(r)^2/\sigma^2 dr \to_d \int_0^1 W(r)^2 dr,$$

so we can conclude

$$\frac{1}{T^2} \sum_{t=1}^T Y_{t-1}^2 = \int_0^1 T X_T(r)^2 dr \to_d \sigma^2 \int_0^1 W(r)^2 dr.$$

In order to find out more about  $\sum_{t=2}^{T} \varepsilon_t Y_{t-1}$ , consider

$$Y_t^2 = (Y_{t-1} + \varepsilon_t)^2 = Y_{t-1}^2 + \varepsilon_t^2 + 2Y_{t-1}\varepsilon_t$$

so, rearranging terms,

$$Y_t^2 - Y_{t-1}^2 - \varepsilon_t^2 = 2Y_{t-1}\varepsilon_t.$$

Summing over  $t, t = 1, \ldots, T$ ,

$$\sum_{t=1}^{T} Y_t^2 - \sum_{t=1}^{T} Y_{t-1}^2 - \sum_{t=1}^{T} \varepsilon_t^2 = 2 \sum_{t=1}^{T} Y_{t-1} \varepsilon_t$$

and

$$\sum_{t=1}^{T} Y_t^2 - \sum_{t=1}^{T} Y_{t-1}^2$$

$$= (Y_1^2 + Y_2^2 + \ldots + Y_t^2 + \ldots + Y_{T-1}^2 + Y_T^2)$$

$$- (Y_0^2 + Y_1^2 + \ldots + Y_{t-1}^2 + \ldots + Y_{T-2}^2 + Y_{T-1}^2)$$

$$= Y_T^2 - Y_0^2 = Y_T^2$$

because  $Y_0 = 0$ , so

$$\sum_{t=1}^{T} Y_{t-1}\varepsilon_t = \frac{1}{2} \left( Y_T^2 - \sum_{t=1}^{T} \varepsilon_t^2 \right).$$

Normalising by *T*,

$$\frac{1}{T}\sum_{t=1}^{T}Y_{t-1}\varepsilon_t = \frac{1}{2}\left(\frac{1}{T}Y_T^2 - \frac{1}{T}\sum_{t=1}^{T}\varepsilon_t^2\right).$$

Since

$$\frac{1}{T}Y_T^2 = TX_T(1)^2 \rightarrow_d \sigma^2 W(1)^2$$

(by the CLT), and

$$\frac{1}{T}\sum_{t=1}^{T}\varepsilon_t^2 \to_p \sigma^2$$

(by the law of large numbers) then

$$\frac{1}{T}\sum_{t=1}^{T}Y_{t-1}\varepsilon_t \rightarrow_d \frac{1}{2}\sigma^2 (W(1)^2 - 1).$$

Summarising,

$$T(\hat{\rho}-1) = \frac{\frac{1}{T} \sum_{t=2}^{T} \varepsilon_t Y_{t-1}}{\frac{1}{T^2} \sum_{t=2}^{T} Y_{t-1}^2} \to_d \frac{\frac{1}{2} \left( W(1)^2 - 1 \right)}{\int_0^1 W(r)^2 dr}$$

★  $\hat{\rho}$  is still consistent ( $\hat{\rho} \rightarrow_p 1$ )

★ indeed,  $\hat{\rho}$  is "superconsistent" (see the rate *T* rather then the usual  $\sqrt{T}$ )

$$\bigstar \frac{\frac{1}{2}(W(1)^2 - 1)}{\int_0^1 W(r)^2 dr}$$
 is not a normal distribution

★ in small samples (and  $\varepsilon_t Nid(0, \sigma^2)$ ),  $\hat{\rho}$  underestimates 1 (in a probabilistic sense)

$$\bigstar \frac{\frac{1}{2}(W(1)^2 - 1)}{\int_0^1 W(r)^2 dr}$$
 is skewed to the left

Testing

$$H_0: \{\rho = 1\} \text{ vs } H_A: \{|\rho| < 1\}$$

in

$$Y_t = \rho Y_{t-1} + \varepsilon_t, \ \varepsilon_t \ i.i.d.(0,\sigma^2) \text{ when } t > 0$$

 $Y_t = 0$  when  $t \le 0$ 

the 5% critical value for the  $T(\hat{\rho} - 1)$  statistic is -8.1.

*t* –statistic:

$$t = \frac{(\hat{\rho} - \rho)}{\hat{\sigma}_{\hat{\rho}}}$$
  
where  $\hat{\sigma}_{\hat{\rho}}^2 = \frac{s^2}{\sum_{t=2}^T Y_{t-1}^2}$   
and  $s^2 = \frac{1}{T-1} \sum_{t=2}^T (Y_t - \hat{\rho} Y_{t-1})^2$ 

When  $|\rho| = 1$ , rewrite

$$t = \frac{T(\hat{\rho} - \rho)}{T\hat{\sigma}_{\hat{\rho}}}.$$

Look at  $T\hat{\sigma}_{\hat{\rho}}$  first. again,

$$\widehat{\rho} \rightarrow_p \rho$$
, so  $s^2 = \frac{1}{T-1} \sum_{t=2}^T (Y_t - \widehat{\rho} Y_{t-1})^2 \rightarrow_p \sigma^2$ .

Since we already saw that

$$\frac{1}{T^2} \sum_{t=2}^T Y_{t-1}^2 \to_d \sigma^2 \int_0^1 W(r)^2 dr,$$

then

$$T^{2}\widehat{\sigma}_{\widehat{\rho}}^{2} = \frac{s^{2}}{\frac{1}{T^{2}}\sum_{t=2}^{T}Y_{t-1}^{2}}$$

$$\rightarrow_{d} \frac{\sigma^{2}}{\sigma^{2}\int_{0}^{1}W(r)^{2}dr} = \frac{1}{\int_{0}^{1}W(r)^{2}dr}$$
and  $T\widehat{\sigma}_{\widehat{\rho}} \rightarrow_{d} \frac{1}{\sqrt{\int_{0}^{1}W(r)^{2}dr}}$ 

As for the numerator,

$$T(\widehat{\rho}-1) \rightarrow_d \frac{\frac{1}{2} \left( W(1)^2 - 1 \right)}{\int_0^1 W(r)^2 dr}$$

summarising,

$$t = \frac{T(\hat{\rho} - 1)}{T\hat{\sigma}_{\hat{\rho}}}, \quad t \to_d \frac{\frac{1}{2} \left( W(1)^2 - 1 \right)}{\sqrt{\int_0^1 W(r)^2 dr}}.$$

 $\bigstar \frac{\frac{1}{2}(W(1)^2 - 1)}{\sqrt{\int_0^1 W(r)^2 dr}}$  is not normally distributed; it is

skewed to the left.

Testing  $H_0$  : { $\rho = 1$ } vs.  $H_A$  : { $|\rho| < 1$ } with a *t* statistic using a 5% significance level, the critical value is -1.95.

Compare with the case  $|\rho| < 1$ :

$$\widehat{\rho} \rightarrow_p \rho,$$

$$T\widehat{\sigma}_{\widehat{\rho}}^2 = \frac{s^2}{\frac{1}{T}\sum_{t=2}^T Y_{t-1}^2} \rightarrow_p \frac{\sigma^2}{\frac{\sigma^2}{1-\phi^2}} = 1 - \phi^2$$

SO

$$t = \frac{\sqrt{T}(\widehat{\rho} - \rho)}{\sqrt{T}\widehat{\sigma}_{\widehat{\rho}}}, t \to_d N(0, 1).$$

Then testing  $H_0$  : { $\rho = \phi$ } vs.  $H_A$  : { $\rho < \phi$ } (when  $|\phi| < 1$ ) with a *t* statistic, with a 5% significance level, the critical value is -1.65.

#### Which unit root test?

Recall the model

 $Y_t = \rho Y_{t-1} + \varepsilon_t, \ \varepsilon_t \ i. i. d. \ (0, \sigma^2) \text{ when } t > 0$ 

 $Y_t = 0$  when  $t \le 0$ 

and  $\rho = 1$  or  $|\rho| < 1$ ;

let  $\hat{\rho}$  be the OLS estimate of  $\rho$ :

since  $\hat{\rho} \rightarrow_p \rho$ , we can use the  $T(\hat{\rho} - 1)$  or the *t* statistic to test for a unit root testing  $H_0$  : { $\rho = 1$ } vs  $H_A$  : { $|\rho| < 1$ }.

However, when  $|\rho| < 1$ , so far we only considered processes  $Y_t$  that have  $E(Y_t) = 0$ . How about processes that are mean reverting and yet the mean to which they revert is not zero? Processes of this kind would be generated by

 $Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t \text{ with } \alpha \neq 0, |\rho| < 1$  $(\varepsilon_t \text{ i.i.d.}(0, \sigma^2)).$ 

If this is the true model and we omit  $\alpha$ , estimating  $\hat{\rho} = \frac{\sum_{t=2}^{T} Y_{t-1}Y_t}{\sum_{t=2}^{T} Y_{t-1}^2}$  instead, then  $\hat{\rho}$  is no longer a

consistent estimate of  $\rho$ : however,  $\hat{\rho}$  converges in probability to a number smaller than one, so we can still rely on the  $T(\hat{\rho} - 1)$  or the *t* statistics to effectively test for a unit root.

"Case 1" Estimate  $\rho$  via OLS in

$$Y_{t} = \rho Y_{t-1} + \varepsilon_{t}$$
assuming  $\varepsilon_{t}$  *i.i.d.*  $(0, \sigma^{2})$ .  
When  $\rho = 1$ ,  
 $T(\hat{\rho} - 1) \rightarrow_{d} \frac{\frac{1}{2} (W(1)^{2} - 1)}{\int_{0}^{1} W(r)^{2} dr}$ ,  $t \rightarrow_{d} \frac{\frac{1}{2} (W(1)^{2} - 1)}{\sqrt{\int_{0}^{1} W(r)^{2} dr}}$ 

#### ₩ Test:

Test  $H_0$  : { $\rho = 1$ } vs.  $H_A$  : { $|\rho| < 1$ } with a *t* statistic (critical value is -1.95 at 5% significance level) (can also use the  $T(\hat{\rho} - 1)$  statistic, the 5% critical value is -8.1).

"Case 2"

Estimate  $\alpha$ ,  $\rho$  via OLS in

$$Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t$$

assuming  $\varepsilon_t i. i. d. (0, \sigma^2)$ .

Here  $\hat{\rho}$  is a consistent estimate of  $\rho$  regardless of  $\alpha$  and  $\rho$ .

When  $\rho = 1$ , in order to have  $Y_t$  as a random walk (i.e., no linear trend) we also need  $\alpha = 0$ : we take it into account when computing the limit distribution of  $T(\hat{\rho} - 1)$  and of the *t* statistic  $\frac{(\hat{\rho}-1)}{\hat{\sigma}_{\hat{\alpha}}}$ .

When  $\alpha = 0$ ,  $\rho = 1$ :

$$T(\hat{\rho}-1) \rightarrow_{d} \frac{\frac{1}{2} \left( W(1)^{2}-1 \right) - W(1) \int_{0}^{1} W(r) dr}{\int_{0}^{1} W(r)^{2} dr - \left( \int_{0}^{1} W(r) dr \right)^{2}}$$
$$t \rightarrow_{d} \frac{\frac{1}{2} \left( W(1)^{2}-1 \right) - W(1) \int_{0}^{1} W(r) dr}{\sqrt{\int_{0}^{1} W(r)^{2} dr - \left( \int_{0}^{1} W(r) dr \right)^{2}}}$$

★ the limit distributions of  $T(\hat{\rho} - 1)$  and of *t* when  $\alpha = 0$  are not normal; they are also even more asymmetric than in Case 1

**★**the limit distribution of  $\sqrt{T} \hat{\alpha}$  when  $\alpha = 0$  is not normal

₩ Test:

Test  $H_0$  : { $\rho = 1$ } vs.  $H_A$  : { $|\rho| < 1$ } with a *t* statistic (critical value is -2.86 at 5% significance level) (can use the  $T(\hat{\rho} - 1)$  statistic, the 5% critical value would be -14.1) (the limit distributions of the *t* and of the  $T(\hat{\rho} - 1)$  statistics are computed under the assumption  $\alpha = 0$ ).

Joint test,  $H_0$ : { $\alpha = 0, \rho = 1$ } vs  $H_A$ : { $\alpha \neq 0$  &/or  $\rho \neq 1$ } (the *F* test statistic associated to this test does not converge to  $1/2 \chi_2^2$ : the 5% critical value is 4.59, as opposed to 2.99).

#### Which test then?

If  $Y_t$  does not have a unit root and  $E(Y_t) \neq 0$ , in Case 1 we overestimate  $\rho$  (in a probabilistic sense) a bit: the test will still be useful to detect a unit root, but it may have less power than a test in which a consistent estimate of  $\rho$  is used.

On the other hand, if If  $Y_t$  does not have a unit root and  $E(Y_t) = 0$ , then the two estimates of  $\rho$  (using Case 2 or Case 1) have the same limit distribution: however, the critical value for case 2 is smaller (-2.86 instead of -1.95), so in a finite sample there will be a higher proportion of Type 2 errors when using Case 2.

Finally, also notice that the *t* test has "one-sided" alternative, as opposed to the "two-sided" alternatives in the joint test in Case 2: one-sided alternative use more information (in this case, the knowledge that  $\rho$  is not bigger than 1) and this pays off because it gives more power.

The choice between the Case 1 and the Case 2 model then depends on how confident we can be of  $\alpha = 0$  if  $|\rho| < 1$ : if we have no reasons to expect  $\alpha = 0$  if  $|\rho| < 1$ , Case 2 should be preferred.

#### What if there is a linear trend?

If  $\alpha \neq 0$  in  $Y_t = \alpha + Y_{t-1} + \varepsilon_t$  (t > 0), by repeated substitution

$$Y_t = \alpha t + \sum_{j=1}^t \varepsilon_j,$$

so the process has a linear trend, together with the random walk  $\sum_{j=1}^{t} \varepsilon_j$ .

"Case 3"

estimate  $\alpha$ ,  $\rho$  in

$$Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t$$

assuming  $\varepsilon_t i. i. d. (0, \sigma^2)$ .

When  $\alpha \neq 0$ ,  $\rho = 1$ 

$$T^{3/2}(\widehat{\rho}-1) \rightarrow_d N\left(0,\frac{12}{\alpha^2}\sigma^2\right), \quad t \rightarrow_d N(0,1).$$

★even faster rate of convergence, and limit normality

**₽** Test:

Test  $H_0$ : { $\rho = 1$ } vs.  $H_A$ : { $|\rho| < 1$ } with a  $T^{3/2}(\hat{\rho} - 1)$  or a *t* statistic (the limit distributions of the  $T^{3/2}(\hat{\rho} - 1)$  and of the *t* statistics are computed under the assumption  $\alpha \neq 0$ )

"Case 4"

estimate  $\alpha$ ,  $\rho$ ,  $\delta$  in

$$Y_t = \alpha + \rho Y_{t-1} + \delta t + \varepsilon_t$$

assuming  $\varepsilon_t i. i. d. (0, \sigma^2)$ .

When  $\rho = 1$ ,  $\delta = 0$ :

★ the  $T(\hat{\rho} - 1)$  and the *t* statistics to test  $H_0$ : { $\rho = 1$ } vs  $H_A$ : { $|\rho| < 1$ } do not converge to a N(0, 1).

₩ Test:

Test  $H_0$  : { $\rho = 1$ } vs.  $H_A$  : { $|\rho| < 1$ } with a *t* statistic (critical value is -3.41 at 5% significance level) (can also use the  $T(\hat{\rho} - 1)$  statistic, the 5% critical value is -21.8) (the limit distributions of the *t* and of the  $T(\hat{\rho} - 1)$  statistics are computed under the assumption  $\delta = 0$ ).

Joint test,  $H_0$ : { $\rho = 1, \delta = 0$ } vs  $H_A$ : { $\rho \neq 1$  &/or  $\delta \neq 0$ } (the *F* test statistic associated to this test does not converge to 1/2  $\chi_2^2$ : the 5% critical value is 6.25, as opposed to 2.99).

#### Summarising

Case 4 seems to be the natural model when the data may have a linear trend.

## Augmented Dickey Fuller test (ADF)

Allow for a more general dynamic structure:

$$Y_t = Y_{t-1} + u_t, \text{ when } t > 0$$
$$Y_t = 0 \text{ when } t \le 0$$

what if  $u_t$  is (stationary) AR(p-1) ( $E(u_t) = 0$ ), instead of an independent process?

Let

$$u_t = \sum_{j=1}^{p-1} \zeta_j u_{t-j} + \varepsilon_t, \text{ where } \varepsilon_t \text{ is i.i.d.}(0, \sigma^2)$$

notice that  $u_t$  is observable, because

$$u_t = \Delta Y_t$$

SO

$$Y_{t} = Y_{t-1} + u_{t} = Y_{t-1} + \sum_{j=1}^{p-1} \zeta_{j} u_{t-j} + \varepsilon_{t}$$
$$= Y_{t-1} + \sum_{j=1}^{p-1} \zeta_{j} \Delta Y_{t-j} + \varepsilon_{t}$$

Estimate (via OLS)  $\rho$ ,  $\zeta_1$ , ...,  $\zeta_{p-1}$ , in the model

$$Y_t = \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t$$

 $(\varepsilon_t i.i.d.(0,\sigma^2)).$ 

When  $\rho = 1$  :

★ the *t* statistic to test  $H_0$  : { $\rho = 1$ } vs  $H_A$  : { $|\rho| < 1$ } behaves asymptotically as in Case 1 of the basic D-F test (i.e. the limit properties of  $\hat{\rho}$ are not affected by the knowledge, or lack of, of  $\zeta_1$ , ..,  $\zeta_{p-1}$ )

★ the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are not affected by the knowledge, or lack of, of  $\rho$ , so the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are the same ones as those of the OLS estimates in the (stationary) AR(p-1) model

$$\Delta Y_t = \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t.$$

Estimate (via OLS)  $\alpha$ ,  $\rho$ ,  $\zeta_1$ , ...,  $\zeta_{p-1}$ , in the model

$$Y_t = \alpha + \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t$$

 $(\varepsilon_t \ i. i. d. (0, \sigma^2)).$ 

When  $\alpha = 0$ ,  $\rho = 1$ :

★ the *t* statistic to test  $H_0$ : { $\rho = 1$ } vs  $H_A$ : { $|\rho| < 1$ } and the *F* statistic to jointly test  $H_0$ : { $\alpha = 0, \rho = 1$ } vs  $H_A$ : { $\alpha \neq 0$  &/or  $\rho \neq 1$ } behave asymptotically as in Case 2 of the basic D-F test (i.e. the limit properties of  $\hat{\alpha}$  and  $\hat{\rho}$  are not affected by the knowledge, or lack of, of  $\zeta_1, ..., \zeta_{p-1}$ ) ★ the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are not affected by the knowledge, or lack of, of  $\alpha$  or of  $\rho$ , so the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are the same ones as those of the OLS estimates in the (stationary) AR(p-1) model

$$\Delta Y_t = \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t.$$

Estimate (via OLS)  $\alpha$ ,  $\rho$ ,  $\zeta_1$ , ...,  $\zeta_{p-1}$ , in the model

$$Y_t = \alpha + \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t$$

 $(\varepsilon_t i.i.d.(0,\sigma^2))$ 

When  $\alpha \neq 0$ ,  $\rho = 1$ :

★ the *t* statistic to test  $H_0$  : { $\rho = 1$ } vs  $H_A$  : { $|\rho| < 1$ } behaves asymptotically as in Case 3 of the basic D-F test (i.e. the limit properties of  $\hat{\alpha}$ and  $\hat{\rho}$  are not affected by the knowledge, or lack of, of  $\zeta_1, ..., \zeta_{p-1}$ )

★ the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are not affected by the knowledge, or lack of, of  $\alpha$  and of  $\rho$ , so the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are the same ones as those of the OLS estimates in the (stationary) AR(p-1) model

$$\Delta Y_t = lpha + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t.$$

Estimate (via OLS)  $\alpha$ ,  $\rho$ ,  $\zeta_1$ , ...,  $\zeta_{p-1}$ , in the model

$$Y_t = \alpha + \rho Y_{t-1} + \delta t + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t$$

 $(\varepsilon_t \ i. i. d. (0, \sigma^2))$ 

When  $\delta = 0$ ,  $\rho = 1$ :

★ the *t* statistic to test  $H_0$ : { $\rho = 1$ } vs  $H_A$ : { $|\rho| < 1$ } and the *F* statistic to jointly test  $H_0$ : { $\rho = 1, \delta = 0$ } vs  $H_A$ : { $\rho \neq 1 \&/\text{or } \delta \neq 0$ } behave asymptotically as in Case 4 of the basic D-F test (the limit properties of  $\hat{\alpha}$ , of  $\hat{\rho}$  and of  $\hat{\delta}$  are not affected by the knowledge, or lack of, of  $\zeta_1, ..., \zeta_{p-1}$ ). ★ the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are not affected by the knowledge, or lack of, of  $\alpha$ , of  $\rho$  and of  $\delta$ , so the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are the same ones as those of the OLS estimates in the (stationary) AR(p - 1) model

$$\Delta Y_t = lpha + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t.$$

#### Summarising:

★once that the lags  $\Delta Y_{t-1},...,\Delta Y_{t-p+1}$  have been added to the model, we can just test if  $\rho = 1$  using the *t* or the *F* statistic, and refer to the "basic" (ie, with no lags) case for the limit distributions.

This is a very useful result, because it means that we do not have to adjust the limit distributions to the structure of  $u_t$ : the adjustment is made automatically by the *t* or by the *F* statistic.

★The result that the limit properties of  $\hat{\zeta}_1, ..., \hat{\zeta}_{p-1}$  are the same ones as those of the estimates in the (stationary) AR(p - 1) and therefore do not depend on  $\rho$  is very useful as well, because we can use it to determine the order p - 1 of the AR(p - 1) structure when indeed p - 1 is unkown.

★If we don't know p - 1, we can select the order of the AR model for  $u_t$  using an information criterion; otherwise, we may select a tentative order, say, *pmax* (obviously, *pmax*> *p*), and test if  $\hat{\zeta}_p, \ldots, \hat{\zeta}_{pmax-1}$ are not statistically significant. The hypotesis of an AR(p - 1) model for  $u_t$  is rather general, because it corresponds to an AR(p) model for  $Y_t$  (at least, when no linear trends are present). We can see it by looking, for example, at the Case 1 representation

$$Y_{t} = \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_{j} \Delta Y_{t-j} + \varepsilon_{t}$$
$$Y_{t} - \rho Y_{t-1} - \sum_{j=1}^{p-1} \zeta_{j} \Delta Y_{t-j} = \varepsilon_{t}$$

Using the lag operator, replacing  $Y_{t-1}$  by  $LY_t$ ,  $\Delta$  by (1 - L) and  $Y_{t-j}$  by  $L^jY_t$ ,

$$Y_{t} - \rho Y_{t-1} - \sum_{j=1}^{p-1} \zeta_{j} \Delta Y_{t-j}$$
$$= \left(1 - \rho L - \sum_{j=1}^{p-1} \zeta_{j} (1 - L) L^{j}\right) Y_{t}$$

and

$$1 - \rho L - \sum_{j=1}^{p-1} \zeta_j (1 - L) L^j$$
  
=  $1 - \rho L - (1 - L) \sum_{j=1}^{p-1} \zeta_j L^j$   
=  $1 - \rho L - (1 - L) \zeta_1 L - (1 - L) \zeta_2 L^2 - \dots$   
 $- (1 - L) \zeta_{p-1} L^{p-1}$   
=  $1 - \rho L - \zeta_1 L + \zeta_1 L^2 - \zeta_2 L^2 + \zeta_2 L^3 - \dots$   
 $- \zeta_{p-1} L^{p-1} + \zeta_{p-1} L^p$   
=  $1 + (-\rho - \zeta_1) L + (\zeta_1 - \zeta_2) L^2 + \dots$   
 $+ (\zeta_{p-2} - \zeta_{p-1}) L^{p-1} + \zeta_{p-1} L^p$   
=  $1 - (\rho + \zeta_1) L - (\zeta_2 - \zeta_1) L^2 - \dots$   
 $- (\zeta_{p-1} - \zeta_{p-2}) L^{p-1} - (-\zeta_{p-1}) L^p$ 

SO

$$\phi_1 = \rho + \zeta_1$$
  
$$\phi_2 = \zeta_2 - \zeta_1$$
  
...

$$\phi_{p-1} = \zeta_{p-1} - \zeta_{p-2}$$
$$\phi_p = -\zeta_{p-1}$$

We can also notice that the  $\phi_j$  are such that

$$\phi_{1} + \phi_{2} + \ldots + \phi_{p-1} + \phi_{p}$$
  
=  $\rho + \zeta_{1} + \zeta_{2} - \zeta_{1} + \ldots + \zeta_{p-1} - \zeta_{p-2} - \zeta_{p-1}$   
=  $\rho$ 

SO

when 
$$\rho = 1$$
,  
 $\phi_1 + \phi_2 + \ldots + \phi_{p-1} + \phi_p = 1$ .

# An alternative regression for DF/ADF

Consider again, for example, the regression model for Case 2:

$$Y_t = \alpha + \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t$$

( $\varepsilon_t i. i. d. (0, \sigma^2)$ ). Subctracting  $Y_{t-1}$  by both sides, we get

$$\Delta Y_t = \alpha + (\rho - 1)Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t$$

This model is equivalent to the previous one, but instead of testing  $H_0\{\rho = 1\}$  we then test  $H_0\{\rho - 1 = 0\}$ .

The test is equivalent to the previous one (so, it also uses the same limit distribution).

Of course, it is also possible to adapt the other cases (Case 1 to Case 4) to test  $H_0\{\rho - 1 = 0\}$  instead.

#### Phillips and Perron test (PP)

Allow for a more general dynamic structure:

$$Y_t = Y_{t-1} + u_t$$
, when  $t > 0$ 

$$Y_t = 0$$
 when  $t \le 0$ 

what if  $u_t$  is (stationary and invertible) ARMA(p,q) (with  $E(u_t) = 0$ ), instead of an independent process?

Case 1

Let 
$$\widehat{\rho} = \frac{\sum_{t=2}^{T} Y_t Y_{t-1}}{\sum_{t=2}^{T} Y_{t-1}^2},$$
  
 $T(\widehat{\rho} - 1) \rightarrow_d \frac{\frac{1}{2} (W(1)^2 - 1)}{\int_0^1 W(r)^2 dr} + v$ 

where *v* is a shift term.

This can be consistently estimated: call that estimate  $\hat{v}$ , we can test for a unit root using

$$T(\widehat{\rho}-1) - \widehat{\nu} \rightarrow_d \frac{\frac{1}{2} \left( W(1)^2 - 1 \right)}{\int_0^1 W(r)^2 dr}$$

★ Case 2, Case 3 and Case 4 work in the same way (the shift term v may be different).

★The same considerations for the choice Case 1 vs Case 2, and Case 3 vs Case 4 apply.

★ $\hat{\rho}$  is still "superconsistent" (compare with  $|\rho| < 1$ :  $\hat{\rho}$  would in general inconsistent, in this case)

 $\bigstar$  the PP test works in a more general set up than the ADF

★ the ADF has more power than the PP if p is known; otherwise, the performance of the two tests are not much different.

#### Appendix

- The distributions of the Dickey and Fuller *t* statistics
- Which Case in the unit root test?

## The distributions of the Dickey and Fuller *t* statistics



Note: Generated using 5000 repetitions and T = 1000.

Note: Black, *N*(0, 1); Blue, Case 1; Red, Case 2, Green Case 4.

#### Which Case in the unit root test?

Case 1 and Case 2 both have the same null hypothesis,

$$Y_t = Y_{t-1} + \varepsilon_t$$
, i.e.,  $\rho = 1$ .

If indeed  $\rho = 1$ , then both tests will NOT Reject the null hypothesis with probability 95% (as we set the size to 5%). So, we can only choose between the two tests if we look at what happens when in fact the null hypothesis is not correct and  $|\rho| < 1$ .

Two alternatives are possible: "c = 0", i.e,  $Y_t = \rho Y_{t-1} + \varepsilon_t$ , and " $c \neq 0$ ", i.e.  $Y_t = c + \rho Y_{t-1} + \varepsilon_t$ .



The BLUE distribution is the distribution of the standardized *t* statistic if Case 1 is estimated, and the RED if Case 2 is estimated (note that the theoretical limit distribution of  $\hat{\rho}$  is the same, the apparent difference in the distribution of *t* is only due to the sample variability).

The critical value for Case 1 is -1.95, and in our example, 97.9% was below it (i.e., in 97.9% of the samples we correctly concluded that  $|\rho| < 1$ );

The critical value for Case 2 is -2.86, and in our example, 67.7% was below it (i.e., in 67.7% of the samples we correctly concluded that  $|\rho| < 1$ ).

★  $c \neq 0$ . The distribution of the estimate of  $\rho$  and of the standardized *t* under Case 2 are unaffected. Under case 1, however,  $\rho$  is no longer consistently estimated. Here we kept T = 100 and  $\rho = 0.85$  but set c = 2.5:



The BLUE distribution is for the standardized t statistic if Case 1 is estimated, and the RED if Case 2 is estimated (note that the theoretical limit distributions of t are no longer same; the RED distribution is the same as in the case with c = 0).

Case 1: in our example in 29.3% of the samples we correctly concluded  $|\rho| < 1$ ;

Case 2: in our example in 67.7% of the samples we correctly concluded  $|\rho| < 1$ .