

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Economia, Management e Metodi Quantitativi

Academic Year 2019-2020 Time Series Econometics Fabrizio Iacone

Chapter 10: Unit Root testing

Topics: Brownian motion, Functional central limit theorem, Limit properties of the sample mean of a random walk, Limit properties of the OLS estimate of the autoregressive parameter in a random walk, Limit properties of the t statistic associated to the OLS estimate of the autoregressive parameter in a random walk, The Dickey Fuller test for a unit root in a random walk: Case 1, The Dickey Fuller test for a unit root in a random walk: Case 2, The Dickey Fuller test for a unit root in a random walk with drift: Case 3, The Dickey Fuller test for a unit root in a random walk with drift: Case 4, Choice of the unit root test, Augmented Dickey Fuller test for a unit root when the disturbances have a stationary AR(p) structure: Case 1, Case 2, Case 3, Case 4, Choice of the order p in the ADF test, Phillips-Perron tests for a unit root in a generic I(1) process

We saw that

 $Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t$, ε_t w.n. $(0, \sigma^2)$, when $t > 0$ $Y_t = 0$ when $t \leq 0$

has different properties depending on whether $\rho = 1$ or $|\rho| < 1$.

We want a test to distinguish between the two cases.

Introduce

Brownian motion (heuristic)

A Browian motion $W(.)$ is a continuous time stochastic process that associates to each date $t \in [0,1]$ a value $W(t)$ such that \star $W(0) = 0$ **★** for any date $0 \le t_1 < t_e < ... < t_k \le 1$, the differences $W(t_2) - W(t_1)$, $W(t_3) - W(t_2)$, ..., $W(t_k) - W(t_{k-1})$ are normally independently distributed random variables such that, for s, $0 \le t < s \le 1$,

 $W(s) - W(t) \sim N(0, s - t)$

 \star *W(t)* is continous with probability 1

Introduce the operator $[.]^*$, such that $[x]^*$ returns the integer part of a number x . Introduce

$$
X_T(r) = \frac{1}{T} \sum_{t=1}^{[rT]^*} \varepsilon_t, \varepsilon_t \text{ i.i.d.}(0, \sigma^2), \text{ for } r \in [0, 1]
$$

Functional Central Limit Theorem (heuristic)

 $\sqrt{T}X_T(.)/\sigma \rightarrow_d W(.)$

(here and after, these limits are as $T \rightarrow \infty$)

(The FCLT links functions on [0, 1]: we should define what convergence in distribution means, there. It turns out that the nature of the convergence, and even the notation, have to be generalised; however, we do not discuss this).

The Central Limit Theorem,

$$
\sqrt{T} \frac{1}{T} \sum_{t=1}^{T} \varepsilon_t \rightarrow_d N(0, \sigma^2)
$$

is a byproduct of the FCLT:

$$
\sqrt{T}X_T(1)/\sigma \rightarrow_d W(1).
$$

(just set $r = 1$ in the FCLT)

Now, we can see what happens to the sample mean of an $I(1)$ process

$$
Y_t = Y_{t-1} + \varepsilon_t, \varepsilon_t \text{ i.i.d. } (0, \sigma^2), \text{ when } t > 0
$$

$$
Y_t = 0 \text{ when } t \le 0
$$

We can express $Y_1,..., Y_t$ as a function of $X_T(r)$:

$$
X_T(.) = \begin{cases} 0 \text{ for } 0 \le r < 1/T \\ Y_1/T \text{ for } 1/T \le r < 2/T \\ Y_2/T \text{ for } 2/T \le r < 3/T \\ \cdots \\ Y_t/T \text{ for } t/T \le r < (t+1)/T \\ \cdots \\ Y_{T-1}/T \text{ for } (T-1)/T \le r < 1 \\ Y_T/T \text{ for } r = 1 \end{cases}
$$

 $X_T(.)$ is a step function: for $t/T \le r < (t+1)/T$, $X_T(.) = Y_t/T$. For any constant c ,

$$
\int_{t/T}^{(t+1)/T} c dr = c|r|_{t/T}^{(t+1)/T} = c \frac{1}{T}.
$$

In the same way, we can compute

$$
\int_{t/T}^{(t+1)/T} X_T(r) dr = Y_t/T * 1/T = Y_t/T^2.
$$

Then,

$$
Y_0/T^2 + \ldots + Y_t/T^2 + \ldots + Y_{T-1}/T^2
$$

= $\int_{0/T}^{1/T} X_T(r) dr + \ldots + \int_{t/T}^{(t+1)/T} X_T(r) dr + \ldots + \int_{(T-1)/T}^{T/T} X_T(r) dr$

ie.

$$
\frac{1}{T^2}\sum_{t=1}^T Y_{t-1} = \int_0^1 X_T(r) dr
$$

From the FCLT we know that

$$
\sqrt{T}X_T(.)/\sigma \rightarrow_d W(.)
$$

SO

$$
\sqrt{T}\frac{1}{T^2}\sum_{t=1}^T Y_{t-1}/\sigma = \int_0^1 \sqrt{T}X_T(r)/\sigma dr \rightarrow_d \int_0^1 W(r)dr
$$

What is $\int_0^1 W(r) dr$? It is a random variable, obtained by reweighting and averaging normally distributed random variables. In particular, $\int_0^1 W(r) dr$ is a $N(0, 1/3)$.

We can now conclude

$$
\frac{1}{\sqrt{T}}\frac{1}{T}\sum_{t=1}^T Y_{t-1} \rightarrow_d \sigma \int_0^1 W(r)dr,
$$

which is $N(0, 1/3\sigma^2)$.

Since

$$
\frac{1}{\sqrt{T}}\overline{Y} = \frac{1}{\sqrt{T}}\frac{1}{T}\sum_{t=1}^{T}Y_t
$$
\n
$$
= \frac{1}{\sqrt{T}}\frac{1}{T}\sum_{t=0}^{T-1}Y_t + \frac{1}{\sqrt{T}}\frac{1}{T}Y_T - \frac{1}{\sqrt{T}}\frac{1}{T}Y_0
$$
\n
$$
= \frac{1}{\sqrt{T}}\frac{1}{T}\sum_{t=1}^{T}Y_{t-1} + \frac{1}{\sqrt{T}}\frac{1}{T}Y_T - \frac{1}{\sqrt{T}}\frac{1}{T}Y_0,
$$

notice that $Y_0 = 0$, and that $\frac{1}{\sqrt{T}} \frac{1}{T} Y_T \rightarrow_p 0$, so $\frac{1}{\sqrt{T}}\overline{Y}\rightarrow_d \sigma\int_0^1 W(r)dr$

as well.

A test to check if Y_t is a random walk: Estimate ρ via OLS in

$$
Y_t = \rho Y_{t-1} + \varepsilon_t, \ \varepsilon_t \ i.i.d. \ (0, \sigma^2), \text{ when } t > 0
$$
\n
$$
Y_t = 0 \text{ when } t \le 0
$$

When $\rho = 1$,

$$
\widehat{\rho} = \frac{\sum_{t=2}^{T} Y_t Y_{t-1}}{\sum_{t=2}^{T} Y_{t-1}^2} = \frac{\sum_{t=2}^{T} (Y_{t-1} + \varepsilon_t) Y_{t-1}}{\sum_{t=2}^{T} Y_{t-1}^2}
$$
\n
$$
= 1 + \frac{\sum_{t=2}^{T} \varepsilon_t Y_{t-1}}{\sum_{t=2}^{T} Y_{t-1}^2}
$$

In order to find out more about $\sum_{t=2}^{T} Y_{t-1}^2$,

$$
X_T(.)^2 = \begin{cases} 0 \text{ for } 0 \le r < 1/T \\ Y_1^2/T^2 \text{ for } 1/T \le r < 2/T \\ Y_2^2/T^2 \text{ for } 2/T \le r < 3/T \\ \cdots \\ Y_t^2/T^2 \text{ for } t/T \le r < (t+1)/T \\ \cdots \\ Y_{T-1}^2/T^2 \text{ for } (T-1)/T \le r < 1 \\ Y_T^2/T^2 \text{ for } r = 1 \end{cases}
$$

$$
X_T(.)^2
$$
 is a step function: for $t/T \le r < (t+1)/T$,
\n $X_T(.)^2 = Y_t^2/T^2$, so
\n
$$
\int_{t/T}^{(t+1)/T} X_T(r)^2 dr = Y_t^2/T^2 * 1/T = Y_t^2/T^3.
$$

Then,

$$
Y_0^2/T^3 + \dots + Y_t^2/T^3 + \dots + Y_{T-1}^2/T^3
$$

= $\int_{0/T}^{1/T} X_T(r)^2 dr + \dots + \int_{t/T}^{(t+1)/T} X_T(r)^2 dr + \dots$
+ $\int_{(T-1)/T}^{T/T} X_T(r)^2 dr$
i.e.

$$
\frac{1}{T^3}\sum_{t=1}^T Y_{t-1}^2 = \int_0^1 X_T(r)^2 dr
$$

From the FCLT, we can immediately derive

 $TX_T(.)^2/\sigma^2 \rightarrow_d W(.)^2$,

 $(W(r)^2)$ is a well defined random variable, because $W(r)^2/r$ is a χ_1^2) so

$$
T\frac{1}{T^3}\sum_{t=1}^T Y_{t-1}^2/\sigma^2 = \int_0^1 TX_T(r)^2/\sigma^2 dr \rightarrow_d \int_0^1 W(r)^2 dr,
$$

so we can conclude

$$
\frac{1}{T^2}\sum_{t=1}^T Y_{t-1}^2 = \int_0^1 TX_T(r)^2 dr \rightarrow_d \sigma^2 \int_0^1 W(r)^2 dr.
$$

In order to find out more about $\sum_{t=2}^{T} \varepsilon_t Y_{t-1}$, consider

$$
Y_t^2 = (Y_{t-1} + \varepsilon_t)^2 = Y_{t-1}^2 + \varepsilon_t^2 + 2Y_{t-1}\varepsilon_t
$$

so, rearranging terms,

$$
Y_t^2 - Y_{t-1}^2 - \varepsilon_t^2 = 2Y_{t-1}\varepsilon_t.
$$

Summing over t , $t = 1, ..., T$,

$$
\sum_{t=1}^{T} Y_t^2 - \sum_{t=1}^{T} Y_{t-1}^2 - \sum_{t=1}^{T} \varepsilon_t^2 = 2 \sum_{t=1}^{T} Y_{t-1} \varepsilon_t
$$

and

$$
\sum_{t=1}^{T} Y_t^2 - \sum_{t=1}^{T} Y_{t-1}^2
$$
\n
$$
= (Y_1^2 + Y_2^2 + \dots + Y_t^2 + \dots + Y_{T-1}^2 + Y_T^2)
$$
\n
$$
- (Y_0^2 + Y_1^2 + \dots + Y_{t-1}^2 + \dots + Y_{T-2}^2 + Y_{T-1}^2)
$$
\n
$$
= Y_T^2 - Y_0^2 = Y_T^2
$$

because $Y_0 = 0$, so

$$
\sum_{t=1}^T Y_{t-1} \varepsilon_t = \frac{1}{2} \left(Y_T^2 - \sum_{t=1}^T \varepsilon_t^2 \right).
$$

Normalising by T ,

$$
\frac{1}{T}\sum_{t=1}^T Y_{t-1}\varepsilon_t = \frac{1}{2}\left(\frac{1}{T}Y_T^2 - \frac{1}{T}\sum_{t=1}^T \varepsilon_t^2\right).
$$

Since

$$
\frac{1}{T}Y_T^2 = TX_T(1)^2 \rightarrow_d \sigma^2 W(1)^2
$$

(by the CLT), and

$$
\frac{1}{T} \sum_{t=1}^{T} \varepsilon_t^2 \to_p \sigma^2
$$

(by the law of large numbers) then

$$
\frac{1}{T}\sum_{t=1}^T Y_{t-1}\varepsilon_t \rightarrow_d \frac{1}{2}\sigma^2(W(1)^2-1).
$$

Summarising,

$$
T(\widehat{\rho}-1)=\frac{\frac{1}{T}\sum_{t=2}^{T}\varepsilon_{t}Y_{t-1}}{\frac{1}{T^{2}}\sum_{t=2}^{T}Y_{t-1}^{2}}\rightarrow_{d}\frac{\frac{1}{2}(W(1)^{2}-1)}{\int_{0}^{1}W(r)^{2}dr}
$$

 $\star \hat{\rho}$ is still consistent $(\hat{\rho} \rightarrow_{p} 1)$

 \star indeed, $\hat{\rho}$ is "superconsistent" (see the rate T rather then the usual \sqrt{T})

$$
\bigstar \frac{\frac{1}{2}(W(1)^2-1)}{\int_0^1 W(r)^2 dr}
$$
 is not a normal distribution

 \star in small samples (and ε_t *Nid*(0, σ^2)), $\hat{\rho}$ underestimates 1 (in a probabilistic sense)

$$
\star \frac{\frac{1}{2}(W(1)^2 - 1)}{\int_0^1 W(r)^2 dr}
$$
 is skewed to the left

Testing

$$
H_0: \{\rho = 1\}
$$
 vs $H_A: \{|\rho| < 1\}$

in

$$
Y_t = \rho Y_{t-1} + \varepsilon_t, \ \varepsilon_t \ \ i.i.d. (0, \sigma^2) \text{ when } t > 0
$$

$$
Y_t = 0 \text{ when } t \leq 0
$$

the 5% critical value for the $T(\hat{\rho} - 1)$ statistic is $-8.1.$

 t -statistic:

$$
t = \frac{(\hat{\rho} - \rho)}{\hat{\sigma}_{\hat{\rho}}}
$$

where $\hat{\sigma}_{\hat{\rho}}^2 = \frac{s^2}{\sum_{t=2}^T Y_{t-1}^2}$
and $s^2 = \frac{1}{T-1} \sum_{t=2}^T (Y_t - \hat{\rho} Y_{t-1})^2$

When $|\rho| = 1$, rewrite

$$
t=\frac{T(\widehat{\rho}-\rho)}{T\widehat{\sigma}_{\widehat{\rho}}}.
$$

Look at $T\hat{\sigma}_{\hat{\rho}}$ first. again,

$$
\hat{\rho} \to_p \rho
$$
, so $s^2 = \frac{1}{T-1} \sum_{t=2}^T (Y_t - \hat{\rho} Y_{t-1})^2 \to_p \sigma^2$.

Since we already saw that

$$
\frac{1}{T^2}\sum_{t=2}^T Y_{t-1}^2 \to_d \sigma^2 \int_0^1 W(r)^2 dr,
$$

then

$$
T^2 \hat{\sigma}_{\hat{\rho}}^2 = \frac{s^2}{\frac{1}{T^2} \sum_{t=2}^T Y_{t-1}^2}
$$

\n
$$
\rightarrow_d \frac{\sigma^2}{\sigma^2 \int_0^1 W(r)^2 dr} = \frac{1}{\int_0^1 W(r)^2 dr}
$$

\nand
$$
T \hat{\sigma}_{\hat{\rho}} \rightarrow_d \frac{1}{\sqrt{\int_0^1 W(r)^2 dr}}
$$

As for the numerator,

$$
T(\hat{\rho} - 1) \rightarrow_d \frac{\frac{1}{2}(W(1)^2 - 1)}{\int_0^1 W(r)^2 dr}
$$

summarising,

$$
t = \frac{T(\widehat{\rho} - 1)}{T\widehat{\sigma}_{\widehat{\rho}}}, \quad t \to_d \frac{\frac{1}{2}(W(1)^2 - 1)}{\sqrt{\int_0^1 W(r)^2 dr}}.
$$

★ $\frac{\frac{1}{2}(W(1)^2-1)}{\sqrt{\int_0^1 W(r)^2 dr}}$ is not normally distributed; it is

skewed to the left.

Testing H_0 : $\{\rho = 1\}$ vs. H_A : $\{|\rho| < 1\}$ with a t statistic using a 5% significance level, the critical value is -1.95 .

Compare with the case $|\rho|$ < 1:

$$
\widehat{T\sigma}_{\widehat{\rho}}^2 = \frac{s^2}{\frac{1}{T}\sum_{t=2}^T Y_{t-1}^2} \rightarrow_p \frac{\sigma^2}{\frac{\sigma^2}{1-\phi^2}} = 1 - \phi^2
$$

SO

$$
t = \frac{\sqrt{T}(\widehat{\rho} - \rho)}{\sqrt{T}\widehat{\sigma}_{\widehat{\rho}}}, t \rightarrow_d N(0, 1).
$$

Then testing H_0 : $\{\rho = \phi\}$ vs. H_A : $\{\rho < \phi\}$ (when $|\phi|$ < 1) with a *t* statistic, with a 5% significance level, the critical value is -1.65 .

Which unit root test?

Recall the model

 $Y_t = \rho Y_{t-1} + \varepsilon_t$, ε_t *i.i.d.* $(0, \sigma^2)$ when $t > 0$

 $Y_t = 0$ when $t \leq 0$

and $\rho = 1$ or $|\rho| < 1$;

let $\hat{\rho}$ be the OLS estimate of ρ :

since $\hat{\rho} \rightarrow_{p} \rho$, we can use the $T(\hat{\rho} - 1)$ or the t statistic to test for a unit root testing H_0 : $\{\rho = 1\}$ vs H_A : $\{|\rho| < 1\}$.

However, when $|\rho|$ < 1, so far we only considered processes Y_t that have $E(Y_t) = 0$. How about processes that are mean reverting and yet the mean to which they revert is not zero? Processes of this kind would be generated by

 $Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t$ with $\alpha \neq 0, |\rho| < 1$ $(\varepsilon_t$ i.i.d. $(0,\sigma^2)$).

If this is the true model and we omit α , estimating $\widehat{\rho} = \frac{\sum_{t=2}^{T} Y_{t-1} Y_t}{\sum_{t=2}^{T} Y_{t-1}^2}$ instead, then $\widehat{\rho}$ is no longer a

consistent estimate of ρ : however, $\hat{\rho}$ converges in probability to a number smaller than one, so we can still rely on the $T(\hat{\rho} - 1)$ or the *t* statistics to effectively test for a unit root.

"Case 1 " Estimate ρ via OLS in

$$
Y_t = \rho Y_{t-1} + \varepsilon_t
$$

assuming ε_t *i.i.d.* $(0, \sigma^2)$.

When
$$
\rho = 1
$$
,

$$
T(\hat{\rho}-1) \rightarrow_d \frac{\frac{1}{2}(W(1)^2-1)}{\int_0^1 W(r)^2 dr}, \ t \rightarrow_d \frac{\frac{1}{2}(W(1)^2-1)}{\sqrt{\int_0^1 W(r)^2 dr}}
$$

E Test:

Test H_0 : $\{\rho = 1\}$ vs. H_A : $\{|\rho| < 1\}$ with a t statistic (critical value is -1.95 at 5% significance level) (can also use the $T(\hat{p} - 1)$ statistic, the 5% critical value is -8.1).

"Case 2 "

Estimate α , ρ via OLS in

$$
Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t
$$

assuming ε_t *i.i.d.* $(0, \sigma^2)$.

Here $\hat{\rho}$ is a consistent estimate of ρ regardless of α and ρ .

When $\rho = 1$, in order to have Y_t as a random walk (i.e., no linear trend) we also need $\alpha = 0$: we take it into account when computing the limit distribution of $T(\hat{\rho}-1)$ and of the *t* statistic $\frac{(\hat{\rho}-1)}{\hat{\sigma}_2}$.

When $\alpha = 0$, $\rho = 1$:

$$
T(\hat{\rho} - 1) \rightarrow_d \frac{\frac{1}{2}(W(1)^2 - 1) - W(1)\int_0^1 W(r)dr}{\int_0^1 W(r)^2 dr - \left(\int_0^1 W(r)dr\right)^2}
$$

$$
t \rightarrow_d \frac{\frac{1}{2}(W(1)^2 - 1) - W(1)\int_0^1 W(r)dr}{\sqrt{\int_0^1 W(r)^2 dr - \left(\int_0^1 W(r)dr\right)^2}}
$$

★the limit distributions of $T(\hat{\rho} - 1)$ and of *t* when $\alpha = 0$ are not normal; they are also even more asymmetric than in Case 1

★the limit distribution of $\sqrt{T}\hat{\alpha}$ when $\alpha = 0$ is not normal

 $\mathbb F$ Test:

Test H_0 : $\{\rho = 1\}$ vs. H_A : $\{|\rho| < 1\}$ with a t statistic (critical value is -2.86 at 5% significance level) (can use the $T(\hat{\rho} - 1)$ statistic, the 5% critical value would be -14.1) (the limit distributions of the *t* and of the $T(\hat{p} - 1)$ statistics are computed under the assumption $\alpha = 0$).

Joint test, H_0 : $\{\alpha = 0, \rho = 1\}$ vs H_A : $\{\alpha \neq 0 \&\}/$ or $\rho \neq 1$ $\}$ (the *F* test statistic associated to this test does not converge to $1/2 \chi_2^2$: the 5% critical value is 4.59, as opposed to 2.99).

Which test then?

If Y_t does not have a unit root and $E(Y_t) \neq 0$, in Case 1 we overestimate ρ (in a probabilistic sense) a bit: the test will still be useful to detect a unit root, but it may have less power than a test in which a consistent estimate of ρ is used.

On the other hand, if If Y_t does not have a unit root and $E(Y_t) = 0$, then the two estimates of ρ (using Case 2 or Case 1) have the same limit distribution: however, the critical value for case 2 is smaller $(-2.86$ instead of -1.95), so in a finite sample there will be a higher proportion of Type 2 errors when using Case 2.

Finally, also notice that the *t* test has "one-sided" alternative, as opposed to the "two-sided" alternatives in the joint test in Case 2: one-sided alternative use more information (in this case, the knowledge that ρ is not bigger than 1) and this pays off because it gives more power.

The choice between the Case 1 and the Case 2 model then depends on how confident we can be of $\alpha = 0$ if $|\rho| < 1$: if we have no reasons to expect $\alpha = 0$ if $|\rho| < 1$, Case 2 should be preferred.

What if there is a linear trend?

If $\alpha \neq 0$ in $Y_t = \alpha + Y_{t-1} + \varepsilon_t$ ($t > 0$), by repeated substitution

$$
Y_t = \alpha t + \sum_{j=1}^t \varepsilon_j,
$$

so the process has a linear trend, together with the random walk $\sum_{j=1}^t \varepsilon_j$.

"Case 3"

estimate α , ρ in

$$
Y_t = \alpha + \rho Y_{t-1} + \varepsilon_t
$$

assuming ε_t *i.i.d.* $(0, \sigma^2)$.

When $\alpha \neq 0$, $\rho = 1$

$$
T^{3/2}(\widehat{\rho}-1) \rightarrow_d N\left(0, \frac{12}{\alpha^2}\sigma^2\right), \quad t \rightarrow_d N(0,1).
$$

★even faster rate of convergence, and limit normality

E Test:

Test H_0 : $\{\rho = 1\}$ vs. H_A : $\{|\rho| < 1\}$ with a $T^{3/2}(\hat{\rho}-1)$ or a *t* statistic (the limit distributions of the $T^{3/2}(\hat{\rho}-1)$ and of the *t* statistics are computed under the assumption $\alpha \neq 0$)

"Case 4 "

estimate α , ρ , δ in

$$
Y_t = \alpha + \rho Y_{t-1} + \delta t + \varepsilon_t
$$

assuming ε_t *i.i.d.* $(0, \sigma^2)$.

When $\rho = 1$, $\delta = 0$:

 \star the $T(\hat{\rho}-1)$ and the *t* statistics to test H_0 : $\{\rho = 1\}$ vs H_A : $\{|\rho| < 1\}$ do not converge to a $N(0,1)$.

E Test:

Test H_0 : $\{\rho = 1\}$ vs. H_A : $\{|\rho| < 1\}$ with a t statistic (critical value is -3.41 at 5% significance level) (can also use the $T(\hat{p} - 1)$ statistic, the 5% critical value is -21.8) (the limit distributions of the *t* and of the $T(\hat{\rho} - 1)$ statistics are computed under the assumption $\delta = 0$).

Joint test, H_0 : $\{\rho = 1, \delta = 0\}$ vs $H_A: \{\rho \neq 1 \& \int \text{or } \delta \neq 0\}$ (the F test statistic associated to this test does not converge to $1/2 \chi_2^2$: the 5% critical value is 6.25, as opposed to 2.99).

Summarising

Case 4 seems to be the natural model when the data may have a linear trend.

Augmented Dickey Fuller test (ADF)

Allow for a more general dynamic structure:

$$
Y_t = Y_{t-1} + u_t, \text{ when } t > 0
$$

$$
Y_t = 0 \text{ when } t \le 0
$$

what if u_t is (stationary) $AR(p-1)$ ($E(u_t) = 0$), instead of an independent process?

Let

$$
u_t = \sum_{j=1}^{p-1} \zeta_j u_{t-j} + \varepsilon_t
$$
, where ε_t is i.i.d.(0, σ^2)

notice that u_t is observable, because

$$
u_t = \Delta Y_t
$$

SO

$$
Y_{t} = Y_{t-1} + u_{t} = Y_{t-1} + \sum_{j=1}^{p-1} \zeta_{j} u_{t-j} + \varepsilon_{t}
$$

$$
= Y_{t-1} + \sum_{j=1}^{p-1} \zeta_{j} \Delta Y_{t-j} + \varepsilon_{t}
$$

Estimate (via OLS) ρ , ζ_1 , .., ζ_{p-1} , in the model

$$
Y_t = \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t
$$

 $(\varepsilon_t$ i.i.d. $(0,\sigma^2)$).

When $\rho = 1$:

 \star the *t* statistic to test H_0 : $\{\rho = 1\}$ vs H_A : $\{|\rho| < 1\}$ behaves asymptotically as in Case 1 of the basic D-F test (i.e. the limit properties of $\widehat{\rho}$ are not affected by the knowledge, or lack of, of ζ_1 , \ldots , ζ_{p-1})

★ the limit properties of $\hat{\zeta}_1$, ..., $\hat{\zeta}_{p-1}$ are not affected by the knowledge, or lack of, of ρ , so the limit properties of $\widehat{\zeta}_1$, .., $\widehat{\zeta}_{p-1}$ are the same ones as those of the OLS estimates in the (stationary) $AR(p-1)$ model

$$
\Delta Y_t = \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t.
$$

Estimate (via OLS) α , ρ , ζ_1 , .., ζ_{p-1} , in the model

$$
Y_t = \alpha + \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t
$$

 $(\varepsilon_t$ i.i.d. $(0,\sigma^2)$).

When $\alpha = 0$, $\rho = 1$:

★ the *t* statistic to test H_0 : $\{\rho = 1\}$ vs H_A : $\{|\rho| < 1\}$ and the *F* statistic to jointly test $H_0: \{\alpha = 0, \rho = 1\}$ vs $H_A: \{\alpha \neq 0 \& \text{ or } \rho \neq 1\}$ behave asymptotically as in Case 2 of the basic D-F test (i.e. the limit properties of $\hat{\alpha}$ and $\hat{\rho}$ are not affected by the knowledge, or lack of, of ζ_1 , .., ζ_{p-1}) ★ the limit properties of $\hat{\zeta}_1$, ..., $\hat{\zeta}_{n-1}$ are not affected by the knowledge, or lack of, of α or of ρ , so the limit properties of $\widehat{\zeta}_1$, .., $\widehat{\zeta}_{n-1}$ are the same ones as those of the OLS estimates in the (stationary) $AR(p-1) \text{ model}$

$$
\Delta Y_t = \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t.
$$

Estimate (via OLS) α , ρ , ζ_1 , .., ζ_{p-1} , in the model

$$
Y_t = \alpha + \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t
$$

 $(\varepsilon_t$ i.i.d. $(0,\sigma^2)$

When $\alpha \neq 0$, $\rho = 1$:

★ the *t* statistic to test H_0 : $\{\rho = 1\}$ vs H_A : $\{|\rho| < 1\}$ behaves asymptotically as in Case 3 of the basic D-F test (i.e. the limit properties of $\hat{\alpha}$ and $\hat{\rho}$ are not affected by the knowledge, or lack of, of $\zeta_1, ..., \zeta_{p-1}$

★ the limit properties of $\hat{\zeta}_1$, ..., $\hat{\zeta}_{p-1}$ are not affected by the knowledge, or lack of, of α and of ρ , so the limit properties of $\hat{\zeta}_1$, .., $\hat{\zeta}_{p-1}$ are the same ones as those of the OLS estimates in the (stationary) $AR(p-1) \text{ model}$

$$
\Delta Y_t = \alpha + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t.
$$

Estimate (via OLS) α , ρ , ζ_1 , .., ζ_{p-1} , in the model

$$
Y_t = \alpha + \rho Y_{t-1} + \delta t + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t
$$

 $(\varepsilon_t$ i.i.d. $(0,\sigma^2)$

When $\delta = 0$, $\rho = 1$:

★ the *t* statistic to test H_0 : $\{\rho = 1\}$ vs H_A : $\{|\rho| < 1\}$ and the *F* statistic to jointly test $H_0: \{\rho = 1, \delta = 0\}$ vs $H_A: \{\rho \neq 1 \& \text{ or } \delta \neq 0\}$ behave asymptotically as in Case 4 of the basic D-F test (the limit properties of $\hat{\alpha}$, of $\hat{\rho}$ and of $\hat{\delta}$ are not affected by the knowledge, or lack of, of ζ_1 , .., ζ_{p-1}). **★** the limit properties of $\hat{\zeta}_1$, ..., $\hat{\zeta}_{n-1}$ are not affected by the knowledge, or lack of, of α , of ρ and of δ , so the limit properties of $\widehat{\zeta}_1$, .., $\widehat{\zeta}_{n-1}$ are the same ones as those of the OLS estimates in the (stationary) $AR(p-1)$ model

$$
\Delta Y_t = \alpha + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t.
$$

Summarising:

★once that the lags $\Delta Y_{t-1},...,\Delta Y_{t-p+1}$ **have been** added to the model, we can just test if $\rho = 1$ using the t or the F statistic, and refer to the "basic" (ie, with no lags) case for the limit distributions.

This is a very useful result, because it means that we do not have to adjust the limit distributions to the structure of u_t : the adjustment is made automatically by the t or by the F statistic.

 \star The result that the limit properties of $\hat{\zeta}_1$, .., $\hat{\zeta}_{p-1}$ are the same ones as those of the estimates in the (stationary) $AR(p-1)$ and therefore do not depend on ρ is very useful as well, because we can use it to determine the order $p-1$ of the AR($p-1$) structure when indeed $p-1$ is unkown.

 \star If we don't know $p-1$, we can select the order of the AR model for u_t using an information criterion; otherwise, we may select a tentative order, say, *pmax* (obviously, *pmax> p*), and test if $\hat{\zeta}_p$,..., $\hat{\zeta}_{p \mid max-1}$ are not statistically significant.

The hypotesis of an AR($p-1$) model for u_t is rather general, because it corresponds to an $AR(p)$ model for Y_t (at least, when no linear trends are present). We can see it by looking, for example, at the Case 1 representation

$$
Y_t = \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t
$$

$$
Y_t - \rho Y_{t-1} - \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} = \varepsilon_t
$$

Using the lag operator, replacing Y_{t-1} by LY_t , Δ by $(1 - L)$ and Y_{t-1} by L^jY_t ,

$$
Y_{t} - \rho Y_{t-1} - \sum_{j=1}^{p-1} \zeta_{j} \Delta Y_{t-j}
$$

= $\left(1 - \rho L - \sum_{j=1}^{p-1} \zeta_{j} (1-L) L^{j}\right) Y_{t}$

and

$$
1 - \rho L - \sum_{j=1}^{p-1} \zeta_j (1 - L) L^j
$$

= $1 - \rho L - (1 - L) \sum_{j=1}^{p-1} \zeta_j L^j$
= $1 - \rho L - (1 - L) \zeta_1 L - (1 - L) \zeta_2 L^2 - ...$
 $- (1 - L) \zeta_{p-1} L^{p-1}$
= $1 - \rho L - \zeta_1 L + \zeta_1 L^2 - \zeta_2 L^2 + \zeta_2 L^3 - ...$
 $- \zeta_{p-1} L^{p-1} + \zeta_{p-1} L^p$
= $1 + (-\rho - \zeta_1)L + (\zeta_1 - \zeta_2)L^2 + ...$
 $+ (\zeta_{p-2} - \zeta_{p-1})L^{p-1} + \zeta_{p-1} L^p$
= $1 - (\rho + \zeta_1)L - (\zeta_2 - \zeta_1)L^2 - ...$
 $- (\zeta_{p-1} - \zeta_{p-2})L^{p-1} - (-\zeta_{p-1})L^p$

SO

$$
\phi_1 = \rho + \zeta_1
$$

$$
\phi_2 = \zeta_2 - \zeta_1
$$
...

$$
\phi_{p-1} = \zeta_{p-1} - \zeta_{p-2}
$$

$$
\phi_p = -\zeta_{p-1}
$$

We can also notice that the ϕ_j are such that

$$
\phi_1 + \phi_2 + \dots + \phi_{p-1} + \phi_p
$$

= $\rho + \zeta_1 + \zeta_2 - \zeta_1 + \dots + \zeta_{p-1} - \zeta_{p-2} - \zeta_{p-1}$
= ρ

SO

when
$$
\rho = 1
$$
,
\n $\phi_1 + \phi_2 + ... + \phi_{p-1} + \phi_p = 1$.

An alternative regression for DF/ADF

Consider again, for example, the regression model for Case 2:

$$
Y_t = \alpha + \rho Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t
$$

 $(\varepsilon_t$ *i.i.d.* $(0, \sigma^2)$). Subctracting Y_{t-1} by both sides, we get

$$
\Delta Y_t = \alpha + (\rho - 1)Y_{t-1} + \sum_{j=1}^{p-1} \zeta_j \Delta Y_{t-j} + \varepsilon_t
$$

This model is equivalent to the previous one, but instead of testing $H_0\{\rho = 1\}$ we then test $H_0\{\rho - 1 = 0\}.$

The test is equivalent to the previous one (so, it also uses the same limit distribution).

Of course, it is also possible to adapt the other cases (Case 1 to Case 4) to test H_0 { ρ - 1 = 0} instead.

Phillips and Perron test (PP)

Allow for a more general dynamic structure:

$$
Y_t = Y_{t-1} + u_t
$$
, when $t > 0$

$$
Y_t = 0 \text{ when } t \leq 0
$$

what if u_t is (stationary and invertible) $ARMA(p,q)$ (with $E(u_t) = 0$), instead of an independent process?

Case 1

Let
$$
\hat{\rho} = \frac{\sum_{t=2}^{T} Y_t Y_{t-1}}{\sum_{t=2}^{T} Y_{t-1}^2}
$$
,
\n
$$
T(\hat{\rho} - 1) \rightarrow_d \frac{\frac{1}{2} (W(1)^2 - 1)}{\int_0^1 W(r)^2 dr} + v
$$

where v is a shift term.

This can be consistently estimated: call that estimate \hat{v} , we can test for a unit root using

$$
T(\widehat{\rho}-1)-\widehat{v} \rightarrow_d \frac{\frac{1}{2}(W(1)^2-1)}{\int_0^1 W(r)^2 dr}
$$

 \bigstar Case 2, Case 3 and Case 4 work in the same way (the shift term v may be different).

 \star The same considerations for the choice Case 1 vs Case 2, and Case 3 vs Case 4 apply.

 $\bigstar \widehat{\rho}$ is still "superconsistent" (compare with $|\rho| < 1$: $\hat{\rho}$ would in general inconsistent, in this case)

 \star the PP test works in a more general set up than the ADF

 \star the ADF has more power than the PP if *p* is known; otherwise, the performance of the two tests are not much different.

Appendix

- The distributions of the Dickey and **Fuller t statistics**
- . Which Case in the unit root test?

The distributions of the Dickey and Fuller *t* statistics

Note: Generated using 5000 repetitions and $T = 1000.$

Note: Black, $N(0,1)$; Blue, Case 1; Red, Case 2, Green Case 4.

Which Case in the unit root test?

Case 1 and Case 2 both have the same null hypothesis,

$$
Y_t = Y_{t-1} + \varepsilon_t
$$
, i.e., $\rho = 1$.

If indeed $\rho = 1$, then both tests will NOT Reject the null hypothesis with probability 95% (as we set the size to 5%). So, we can only choose between the two tests if we look at what happens when in fact the null hypothesis is not correct and $|\rho|$ < 1.

Two alternatives are possible: " $c = 0$ ", i.e, $Y_t = \rho Y_{t-1} + \varepsilon_t$, and " $c \neq 0$ ", i.e. $Y_t = c + \rho Y_{t-1} + \varepsilon_t$.

The BLUE distribution is the distribution of the standardized t statistic if Case 1 is estimated, and the RED if Case 2 is estimated (note that the theoretical limit distribution of $\hat{\rho}$ is the same, the apparent difference in the distribution of t is only due to the sample variability).

The critical value for Case 1 is -1.95 , and in our example, 97.9% was below it (i.e., in 97.9% of the samples we correctly concluded that $|\rho|$ < 1);

The critical value for Case 2 is -2.86 , and in our example, 67.7% was below it (i.e., in 67.7% of the samples we correctly concluded that $|\rho| < 1$).

 $\mathbf{F} \in \mathcal{C} \neq 0$. The distribution of the estimate of ρ and of the standardized t under Case 2 are unaffected. Under case 1, however, ρ is no longer consistently estimated. Here we kept $T = 100$ and $\rho = 0.85$ but set $c = 2.5$:

The BLUE distribution is for the standardized t statistic if Case 1 is estimated, and the RED if Case 2 is estimated (note that the theoretical limit distributions of *t* are no longer same; the RED distribution is the same as in the case with $c = 0$).

Case 1: in our example in 29.3% of the samples we correctly concluded $|\rho|$ < 1;

Case 2: in our example in 67.7% of the samples we correctly concluded $|\rho|$ < 1.