
Lecture 15 - 04-05-2020

1.1 Regret analysis of OGD

We introduce the Regret.

1

m

T∑
t=1

`t(wt)−
1

T

T∑
t=1

`t(u
∗
t )

(x1, y1)...(xt, yt) `t(w) =
(
wT xt − yt

)2
we build a loss function for example with the square loss.
The important thing is that `1, `2, ... is a sequence of convex losses.

In general we de�ne the regret in this way:

RT (u) =
T∑
t=1

`t(wt)−
T∑
t=1

`t(ut)

The Gradiant descent is one of the simplest algorithm for minimising a convex
function. We recall the iteration did by the algorithm:

wt+1 ← wt − ηt∇f(wt) ηt > 0 learning rate f convex

f : Rd → R that's why use the gradiand instead of the derivative

Learning rate can depend on time and we approach the region of the function
f where the region is 0. We keep on moving in the X axes in the direction
where the function is decreasing.

1



1.1.1 Projected OGD

2 parameters: η > 0 and U > 0
Initialisation: w1 = (0, ..., 0)
For t = 1, 2, ...

1) Gradiant step:

w′t+1 = wt −
η√
t
∇`t(wt) (xt, yt) `t

Figure 1.1:

2) Projection step:

wt+1 = arg min
w:‖w‖≤U

‖w − w′t+1‖

Projection of w′t+1 onto the ball of radius U .

Figure 1.2:

Now we de�ne the Regret:

U∗T = arg min
U∈Rd ‖U‖≤U

1

T

T∑
t=1

`t(U)

We are interested in bounding the regret RT (U
∗
T )

I will Fix `1, ...`t let U = U>
T for U .

Taylor's theorem for multivariate functions
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Let's look a univariate �rst f : R → R ( has to be twice di�erentiable)
w, u ∈ R

f(u) = f(w) + f ′(w) (u− w) + 1

2
f ”(x) (u− w)2

For the multivariate case:
f : Rd → R twice di�erentiable ∀u,w ∈ Rd

f(u) = f(w) +∇f(w)T (u− w) + 1

2
(u− w)T ∇2f(ξ) (u− w)

where ξ is some point on the segment goining u and w. We have the Hessian
matrix of f :

∇2f(x)ij =
∂2f(x)

∂xi ∂xj
|x = xi

If f is convex then, ∇2f is positive and semide�nite.
∀x ∈ Rd ∀z ∈ Rd zT ∇2f(x) z ≥ 0

Figure 1.3:

Now we can apply this results to our problem: in particular I rearrange the
factors

f(w)− f(u) ≤ ∇f(w)T (w − u)

This is Ok for f convex and di�erentiable.
I know that: u− wT∇2f(ξ) (u− w) ≥ 0 because f is convex.

`t(wt)− `t(u) ≤ ∇`t(wt)T (wt − u) Linear Regret

How do we proceed?
The �rst step of the algorithm is : w′t+1 = wt − ηt∇`t(wt) ηt =

η√
t

= − 1

ηt
(w′t+1−wt)T (wt−u) =

1

ηt

(
1

2
‖wt − u‖2 −

1

2
‖w′t+1 − u‖2 +

1

2
‖wt+1 − wt‖2

)
≤
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≤ 1

ηt

(
1

2
‖wt − u‖2 −

1

2
‖wt+1 − u‖2 +

1

2
‖w′t+1 − wt‖2

)
w′ disappear and add minus sign. I am saying that ‖wt+1− u‖ ≤ ‖w′t+1− u‖

Figure 1.4:

So is telling us that wt+1 is closer to u than w′t+1

This holds since the ball is convex.

Now we go back adding and subtracting ± 1
2 ηt+1
‖wt+1 − u‖2

=
1

2 ηt
‖wt − u‖2 −

1

2 ηt+1

‖wt+1 − u‖2−
1

2 ηt
‖wt+1 − u‖2 +

1

2 ηt+1

‖wt+1 − u‖2+
1

2 ηt
‖wt+1−wt‖2

We group the 1,2 and 3,4 elements and sum them up.

RT (U) =
T∑
t=1

(`t(wt)− `t(u)) ≤

This is a telescopic sum: a1 − a2 + a2 − a3 + a3 − a4 + at − at + 1 and
everything in the middle cancel out and remains �rst and last terms.

≤ 1

2 ηt
‖w1−u‖2−

1

ηT+1

‖wT+1−u‖2+
1

2

T∑
t=1

‖wt+1−u‖2
(

1

ηt+1

− 1

ηt

)
+
1

2

T∑
t=1

‖w′t+1 − wt‖2

ηt

where w1 = 0 and ‖wt+1−u‖2 ≤ 4U2 and ‖w′t+1−wt‖2 = η2t ‖∇`t(wt)‖2
We know that ηt =

η√
t

so η1 =
η√
1
= η

RT (U) ≤
1

2 η
U2− 1

2 ηT+1

‖wT+1 − U‖2 + 2U2

T−1∑
t=1

(
1

ηt
− 1

ηt

)
+

+
‖wT+1 − U‖2

2ηT+1

− ‖wT − U‖
2

ηT
+

1

2

T∑
t=1

ηt‖∇`t(wt)‖2

4



where red values cancel out.
I assume that square loss is bounded by some number G2: ‖∇`t(wt)‖2 ≤ G2

Also, it's a telescopic sum again and all middle terms cancel out.

max
t
‖∇t(wt)‖2 ≤ G

RT (U) ≤
1

2 η
U2 + 2U2

(
1

ηT
− 1

η1

)
+
G2

2
η

T∑
t=1

1√
t

ηt =
1√
t

where red values cancel out.
Now how much is this sum

∑T
t=1

1√
t
?

It is bounder by the integral ≤
∫ T
1

dx√
x
≤ 2
√
T

RT (U) ≤
2U2
√
T

η
+ η G2

√
T =

(
2U2

η
+ η G2

)√
T

η = U
G

√
2

So �nally:

1

T

T∑
t=1

`t(wt) ≤ min
‖U‖≤U

1

T

T∑
t=1

`t(u) + U G

√
8

T

RT (U) =
1

T

T∑
t=1

(`t(wt)− `t(u)) ∀u : ‖u‖ ≤ U : RT (U) = O

(
1√
T

)
Basically my regret is gonna go to 0.

For ERMinH where |H| <∞, variance error vanishes at rate 1√
m

The bound U G2
√

8
T

on regret holds for any sequence `1, `2, ... of convex

and a�ordable losses, If `t(w) = `(wT xt, yt) then the bound holds for any
sequence of data points (x1, y1), (x2, y2)..
This is not a statistical assumption but mathematical so stronger.
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