
Lecture 6 - 07-04-2020

(X, Y ) We random variables drawn iid from D on X ·Y −→ where D is �xed

but unknown

Independence does not hold. We do not collect datapoints to an independent

process.

Example: identify new article and i want to put categories. The feed is

highly depend on what is happening in the world and there are some news

highly correlated. Why do we make an assumption that follows reality? Is

very convenient in mathematical term. If you assume Independence you can

make a lot of process in mathematical term in making the algorithm.

If you have enough data they look independent enough. Statistical learn-

ing is not the only way of analyse algorithms �> we will see in linear ML

algorithm and at the end you can use both statistical model s

1.1 Bayes Optimal Predictor

f ∗ : X → Y

f ∗(x) = argminE [ `(y, ŷ)|X = x ] ŷ ∈ Y

In general Y given X has distribution Dy|X = x
Clearly ∀ h X → Y

E [ `(y, f ∗(x))|X = x ] ≤ E [ `(y, h(x)|X = x ]

X, Y E [Y |X = x ] = F (x) −→ ConditionalExpectation

E [E [Y |X ] ] = E(Y )

Now take Expectation for distribution

E [ `(y, f ∗(x)) ] ≤ [E(`(y, h(x)) ]

where risk is smaller in f ∗

I can look at the quantity before

ld Bayes risk −→ Smallest possible risk given a learning problm

ld(f
∗) > 0 because y are still stochastic given X
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Learning problem can be complem → large risk

1.1.1 Square Loss

`(y, ŷ = (y − ŷ)2

I want to compute bayes optimal predictor

ŷ, y ∈ R

f ∗(x) = argminE
[
(y − ŷ)2|X = x

]
= ŷ ∈ R

we use E [X + Y ] = E[X]+E[Y ] = argminE
[
y2 + ŷ2 − 2 · y · ŷ2|X = x

]
=

Dropping y2 i remove something that is not important for ŷ

= argmin(E
[
y2|X = x

]
+ ŷ2 − 2 · ŷ · E [ y|X = x ]) =

= argmin(ŷ2 − 2 · ŷ · E [ y|X = x ]) =

Expectation is a number, so it's a constant

Assume � = y2

argmin
[
�+ ŷ2 + 2 · ŷ · E [Y |X = x ]

]
where redG(ŷ) is equal to the part between [...]

dG(ŷ)

dŷ
= 2 · ŷ − 2 · E [ y|X = x ] = 0 −→ So setting derivative to 0

Suppose we have a learning domain

Figure 1.1: Example of domain of KNN

G′(ŷ) = ŷ2 − 2 · b · ŷ

ŷ = E [ y|X = x ] f ∗(x) = E [ y|X = x ]
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Square loss is nice because expected prediction is ...

In order to predict the best possibile we have to estimate the value given

data point.

E
[
(y − f ∗(x))2|X = x

]
=

= E
[
(y − E [ y|X = x ])2|X = x

]
= V ar [Y |X = x ]

1.1.2 Zero-one loss for binary classi�cation

Y = {−1, 1}

`(y, ŷ) = I{ŷ 6= y} IA(x) =

{
1 x ∈ A
0 x 6∈ A

If ŷ 6= y true, indicator function will give us 1, otherwise it will give 0

D on X · Y D∗x Dy|x = D

Dx η : X −→ [ 0, 1 ] η = P (y = 1|X = x)

D  (Dx, η) −→ Distribution 0-1 loss

X v Dx −→ Where v mean "draw from" and Dx is marginal distribution

Y = 1 with probability η(x)

Dy|x = {η(x), 1− η(x)}
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Suppose we have a learning domain

Figure 1.2: Example of domain of KNN

where η is a function of x, so i can plot it

η will te me Prob(x) =
η tells me a lot how hard is learning problem in the domain

η(x) is not necessary continous

Figure 1.3: Example of domain of KNN

η(x) ∈ {0, 1} y is always determined by x
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How to get f ∗ from the graph?

f+ : X → {−1, 1}
Y = {−1,+1}

Figure 1.4: Example of domain of KNN

===============================

MANCA ROBAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

==============================

f ∗(x) = argminE [ `(y, ŷ)|X = x ] = −→ ŷ ∈ {−1,+1}

= argminE [ I{ŷ = 1} · I{Y = −1}+ I{ŷ = −1} · I{y = 1} |X = x ] =

we are splitting wrong cases

= argmin ( I{ŷ = 1}·E [ I{Y = −1}|X = x ]+I{ŷ = −1}·E [ I{y = 1} |X = x ] ) = >

We know that:

E [ I{y = −1} |X = x ] = 1 · P(ŷ = −1|X = x) + 0 · P(y = 1|X = x) =

P(x = −1|X = x) = 1− η(x)

> = argmin ( I{ŷ = 1} · (1− η(x)) + I{ŷ = −1} · (η(x) )
where Blue colored I{...} = 1° and Orange I{...} = 2°

I have to choose -1 or +1 so we will remove one of the two (1° or
2°)
It depend on η(x):

5



� If η(x) < 1
2
−→ kill 1°

� Else η(x) ≥ 1
2
−→ kill 2°

f ∗(x) =

{
+1 if η(x) ≥ 1

2

−1 if η(x) < 1
2

1.2 Bayes Risk

E [ I{y 6= f ∗(x)} |X = x ] = P(y 6= f ∗(x)|X = x)

η(x) ≥ 1

2
⇒ ŷ = 1 ⇒ P(y 6= 1|X = x) = 1− η(x)

η(x) <
1

2
⇒ ŷ = −1 ⇒ P(y 6= 1|X = x) = η(x)

Conditiona risk for 0-1 loss is:

E [ `(y, f ∗(x)) |X = x ] = I{η(x) ≥ 1

2
}· (1−η(x))+I{η(x) < 1

2
}·η(x) =

= min {η(x), 1− η(x)}

E [ `, f ∗(x) ] = E [min {η(x), 1− η(x)} ]

Figure 1.5: Example of domain of KNN

Conditional risk will be high aroun the half so min between the two is around
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the half since the labels are random i will get an error near 50%.

My condition risk will be 0 in the region in the bottom since label are going

to be deterministic.
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