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Chapter 4, ARMA Models

Topics: White noise, MA(1) model, MA(q)
model, MA(c0) model, AR(1) model, AR(2)
model, AR(p) model, ARMA(1,1) model,
ARMA(p,q) model.

Sum of ARMA processes.



We said we are interested in the v of the
representation

Yo = 1+ D yiet]
j=0

for the impulse response analysis and for
forecasting (assuming ¢tj is observable, of
course).
However, in general we don’t know the yj;,
and we can’t hope to estimate an infinite
number of parameters, so we have to propose
models that are a function of a very little
number of parameters.



The first and most simple model is the

White Noise

{€t}_, 1s white noise if
E(et) = OVt
E(¢?) = 02 Vit
E(eie;) = OVt,7such that 7t # t

SO, lf Yt = &y,

wj =0Vj +0
yi =0V] #0
o)) =0Vj+0

i.e. the process has no memory.



If gt 1S W.H.(O,GZ), and Yi = &y,

® Y: may be independent, but needs
not be;

® Y: may be strictly stationary, but
needs not be;

® Y: 1S covariance stationary;

If & is w.n.(0,02), and

Vo= i+ g Vier,

® Yiis stationary if 3" yf < oo

® Y:is stationary and ergodic (for the
mean) if Zjioh//” < o0



MA (1)
Let ¢t w.n.(0,02), then
Yi = u+ e+ 0t
is MA(1).

We can check stationarity noticing that yo = 1,
w1 =0, s0 Z;iol//jz = 1+62 < w.

Otherwise, we can check that the first two
moments do not depend on time.

Mean:
E(Y:) = E(u+ et +0e1)
= E(u) + E(gt) + E(Ogr-1)
=u +0 +0=u



Autocovariances:
vo =E[(Yi—u)?]
= E[ (et + 0g11)° |
= E(e? + 0%€2 | + 20et611)
= E(e?) + 0°E(e2,) + 20E(&t&1-1)
= 0% +0%7 +0=(1+6%)c?
v1=E[(Yt—w)(Ye1—u)]
= E[(et + Og-1) (et + Ost2)]
= E(ster1 + 0y + Oster o + 0%s1612)

=0 +60c? +0 +0 =062

Yi=2 = 0

% So, it we want to check for stationarity by
checking the moments, we verify

E(Yt) = u forany t
Cov(Yy, Yuj) = yj for any t
and, in particular,

vo = (1+60%)c? y1 =00% yj = 0forj > 2.



Autocorrelations:

piz2 = 0

Partial autocorrelations: using the definition it
is possible to compute

?? — (-0)’ )

C(1+602+...40%) | 62




Y Note: the same autocorrelation structure is
generated by two values of 0. Consider

9=91and6=92= 1/91:

0
when 6 = 01, p1]y_y, = 1+192 ’
1
0
when 0 = 05, P1lop, = 1+292
2

Replacing 0> = 101 in p1],_,,
1/91 . 9% 1/91

Plo-g, = 77 102~ 02 1+ 162
0
T@a1 e

i.e. 01 and 6> (02 = 1/01) generate two equally
valid representations of the same process.



Invertibility
Assume 0 = 601, |01] < 1, and set u = O, then
rewrite Y; = & + 0gi_1 as

gt = Yy — 98t—1

and notice that €11 = Yi1 — O¢t2 50, replacing
in the formula for ¢y,

et = Y —0(Yi1 —Oe2)
= Yt — 9Yt_1 + 928t_2
In the same way, €t2 = Yi2 — 0gt3 SO
gt = Yi—0Ye1 + 0%(Y2 — Oer3)
= Yi — 0Yr1 + 0% — 03613

Iterating n times,
n
er =D (O + (-0) " e
j=0

and, for n - o, since |0| < 1, then (—9)“+1 - 0,
SO

gt = Z(—H)‘YH, ie. Yy = Z—(—H)‘YH + &t
j=0 =1

So for an invertible MA(1) process, we can compute &t
provided that we know VYi,...,Y_, and 6.



An alternative way to obtain this

representation:
Rewrite ¢r = Yi — Og1 as
= Yt — 9L8t
using the lag operator. Then,
Et + 6L8t = Yt
(1+60L)sr =Y
so, for [f] < 1, then &; = (1 +6L)7Yy, i.e.
1
= Y
‘T T+ o0
Since

(1+0L) Z( oYL,

then gt = Z(—Q)th—j,
i=0

1.e. Yt = Z—(—Q)th_j + €t
=1



However, if 8 = 62, |92] > 1, then (-6)™" 4 Oas
N - o, so the representation is not invertible if
0 = 0>.

Finally, if 8; = 1, then 1/0; = 1, and in both the
cases |f| < 1is not met. So, for 8 = 1 no
invertible representation is avalailable.



MA(Q)
Let &t w.n.(0,02), then

Yt = U+ &t + 618'[_1 +.. .-I-Hqgt_q
is MA(Q).

Again, it is easy to verity that this MA(Q) is
stationary, as

Zz//jz =1+ 0% +...405 < .
=0

Mean:

E(Yt) = E(u+é&t+ 01611 +...+0gstq) = U

Autocovariances:

Y0 E[(gt + 01611 +...+8q8t_q)2:|

= (024002 +...+0507?)
— <1+ 07  +.. .+9§,>02
(using E(etjetx) = Ofor K # ).



Vi<qg = E[(et + 01611 +...+0q€1q)

X (gt_j + ngt_]__j +.. .+6q€t_q_j )]
— E(QJStZ_J + 9j+]_018t2_j_1 + 9j+2928t2_j_2 +. .. +9q9q_j8t2_q
= (0 +0101 +01.202 +.. +0qi0q)0?

Yisq = 0

Autocorrelations:
the autocorrelations drop to O after g lags

Impulse Response Function:
the impulse response are vj = 0, ] < g, and
drop to O after g lags.



Invertibility
Set u = 0; recall

Yi = (14 01L +...40¢LY) &t
and factor
(1+01L +...4+04L9)

= (1= 21L)(1 = A2L)... (1 - AgL)

in the MA(1) we asked that |[A11]| < 1: in the
same way here we have to ask that |11] < 1,
A2] < 1...,|4q| < L

This is sometimes stated as asking that the
roots of the equation in z

(1+01z+...4042%) =0

lie outside the unit circle.

If the MA(Q) process is invertible, we can write
et = (L+01L +...404L) 7Y,

and then derive g, 71, 7o, ... such that

o0 o0
Et = Z—?’L'th_j, 1.e. Yt = Z?’L’th_j + €t
j=0 =1



MA (o0)
Let &t w.n.(0,02), then

o0
Y = U+ Et+WY1Et-1 +...= ,Ll-l-Zl//jgt—j
j=0

is MA(0).
Under the additional assumption that

o0
D il < o,
j=0

we can derive the moments replacing 0 by y;
in a MA(q) and taking the limit for g —» .

Mean:
E(Yt) = E(Yt = U+ Et T Y1Et-1 -|-) = U

Autocovariances:



AR(1)
Let &t w.n.(0,02), then
Yi = C+ QY1 + &t
is AR(1).
Assume further that
o] < 1.
Since Y1 = C+ QY2 + €1,
Yt =C+¢(C+ QYo+ er1) + &t
= (1+@)C+ d*Yro + der1 + &t
Next, replace Yio2 = C+ @Yi3 + £t
Yi = (1+¢)C+d?(C+ dYi3+ et2)

+ ¢8t_1 + Et

= (1+¢+¢2)C+d3Yis

+ ¢28t_2 + ¢8t_1 + Et



Iterating n times,

n n
Yi= D ¢+ ™ Y1+ Y dle;
=0 j=0

as N - oo, since |q/)| < 1, then ¢™! - Oand

Yt=1

1‘ ¢ C+ Z ¢j8t_j
=0

So an AR(1) with |[#| < 1 may be written as a
MA (e0): notice that the condition > |vj| < o

is met, because y; = ¢/, 50
Z;iohlfjl = Zjiolcl) | = 1_| . (then it also follows

that the process is stationary and ergodic for
the mean).




This can also be obtained rewriting Y; as
Yt = C+ ¢LY; + &4
using the lag operator, and then
(1-¢L)Y; = C+ &
Since [¢| < 1,
Yi= (1-¢L) e+ (1-¢L) e

and since
1 _ 3 i
Ao~ =
SO
Yi = ZgbjC-l—ZngEt_J
i=0 i=0

then follows.



Mean:

1 __1
E(Y:) = 1_¢0+O+O+O+... 1—¢C
(so set p = rl(/,c)?
Autocovariances:

using the formula for the MA(o0) process,

o = Z‘//ﬁgz _ Z¢2k62 = 3 1 202
k=0 k=0 —¢
Yi= D ViWieio? = Y ¢*pkio?
k=0 k=0

— §¢2k¢j62 _ 1?j¢2 o2

Autocorrelations
pj = % = ¢
Partial autocorrelations
op’ = ¢
a j(jz)z =0
Impulse Response Function

v = ¢



Upon knowing that the process is stationary,
we could derive the mean and autocovariances
using that property:
Mean:
E(Y:) = E(c+ OYi1 + &t)
= C+ ¢E(Yt_1) + E(&t)
using stationarity, E(Y:) = u, E(Y1) = i, so
p=C+ou
and then

H = 1-¢
Autocovariances:
Replacing ¢ = (1 - ¢)u, rewrite Y; as

Yi = uU—ou+ @Y1 + &€t
Yi—u=¢(Yr1—u) + &t
vo = E(Yi—p)? = E(¢(Ye1 — p) + &)
= $2E(Ye1 — p)° + E(f)
+ 20E((Y-1 — p)ét)

= ¢%y0 + 0°



solving for yo,

62

1-¢2
Yiz1 = E[(Ye — ) (Y — 1) ]
= E[(¢(Yer — o) + €0) (Yo — 1) ]
= OE[(Yeer — 1) (Y — )]
+ E(et(Y —p))
= @Y1

70 =

SO

Vizl = 0.



AR(p)
Let &t w.n.(0,02), then
Yi = C+ ¢1Yt_1 +.. .+¢th_p + &t
is AR(p).
How can we check for stationarity? Factoring
(1-¢1L —..—¢pLP) = (1 - A1L)...(1 - ApL)

stationarity follows if |1j| < 1 for all J.
Another way to state this condition is check
that the solutions of the equation in z

(1-¢1z—...—¢pz°) =0
are all outside the unit circle.

Given stationarity,
Mean:

E(Yt)

E(C+@1Yi1 +...+0pYip + €t)
C+ ¢1E(Yi1) +...+0pE(Yip) + E(et)

HL=CH+Qi1u+...+¢pu
C

S [P S—




Autocovariances
vo = E(Yi— p)?
= E[(@1(Yer — ) +.. . +0p(Yep — 1) + &1)
X (Yo —p)]
= E[¢1(Yea — ) (Ye— ) +....
+Pp(Yep — ) (Ye — ) + &t(Yr — ) ]
= @171 +....+dpyp + 02
Yiz1 = E[(Ye— @) (Y — )]
= E[(@1(Yer — p) +.. . 40p(Yep — 1) + &)
X (Yoj — )]
= E[¢p1(Ye1 — 1) (Ve — ) +...
+p(Yp — 1) (Yo — ) + &t(Ye — ) ]

= @17j-1+....+PpYjp
This is a linear system in yj, ] = 0,..., D.



Autocorrelations
(Yule Walker equations)

Piz1 = P1pj-1 +....+PpPjp

Partial autocorrelations AR(p)

ar’ = p1
aj(j) #0 (forl <) <p)
Oflgp) = ¢p

@ _
aj>p =0



For example, AR(2),
Yo = @171+ P2y2 + 02
Y1 = ¢1yo+ P2y-1

Y2 = ¢1y1+ P2Y0
and notice that y1 = y_1, so replacing y1 and
Y 2,

2
Y1 = 1?1@ Yo, V2 = ( 1?1@ +¢2>70
(1-92) 52

T W gL 92)7 - 4]
and
p1 = Q1+ ¢2p1
P2 = P1p1+ @2
SO
p1 = 1?1(152
¢%+¢2—¢§.

p2 1— ¢2



% AR(2) If the roots of 1 — ¢12— ¢2z? = O are
complex, then the autocorrelations show a
cyclical dynamics. This is very important
because both economics and natural
phenomena often display cyclical dynamics.
Example: ¢1 = 0.75, ¢ = —0.45.

Solutions of 1 — 0.75z+ 0.45z% = Q are

Z12 = 0.83333 + 1. 236i.

Note that |zi| = 4/0.83333? + 1. 2362 = 1.4907 so this is
process 1s stationary.

Autocorrelation function:

0.6 -
05- =
0.4
0.3
0.2
0.1

O T T T T . T T T .—\
014 1 2 3 4 5 6 7 8

0.2 - u
0.3 - -
0.4 -

¢1 = 0.75, ¢o = -0.45
* AR(p). If some roots of 1 — ¢1Z—...—¢pz° = Oare
complex, then the autocorrelations show cyclical
dynamics.



Impulse Response Function:
in general we can compute the IRF inverting

(L)Yt = &t

Y = ¢(L) tey
(here we used stationarity) so
p(L) = y(L)
i.e.
1=9¢(L)y()

1= (1= g1l —...—¢LP)
x (1+wyil +wal? +ysl3...)
1=1-¢1L+wil —d2L? — dry1l? + yol?
— ¢33 — dow L3 — daw ol +ysl3 +.. ..



solve this for the various powers of L :

L0O: 1=1
L: —-¢1+w1=0,50y1 =0¢1
L2 —d2—diwi+y2 =0,
SOW2 = Q1y1 + P2
L3 —¢d3—doy1—dw2+ys =0,

SO W3 = 3+ Q21+ P1y2

In the AR(2) case, then,
Vi1 = ¢1/
Viz2 = Yj-101 + g2y

so if for example ¢1 = 0.75, ¢o = —0.45,
w1 = 0.75
w2 =0.75x0.75+ (-0.45) x 1 = 0.1125
w3 = 0.1125x 0.75+ (—0.45) x 0.75 = —0.25313
w4 = —0.25313 x 0.75 + (—0.45) x 0.1125 = —-0.24047



ARMA(p, q)

Let &t w.n.(0,02), then
Yt = C+ ¢1Yt1 +...+Pp Yip
+ &t + 01601 +...+0g€tq
is ARMA(p, Q).

Stationarity of the whole ARMA(p, () depends
on the autoregressive part only: we have to
check if the roots of

1-¢1z—...—¢ppzP =0

are all outside the unit circle.

For invertibility, we require that the roots of
1+01z+...40q2% = 0

are outside the unit circle.



Using the lag operator, the ARMA(p, Q) is
(1—¢1l —...—¢pLP)Yr = (1 + 01L +...+04L )&y

% Using stationarity, we can rewrite the
model as a MA():

Yi = (1— g1l —..—¢pLP) (1 + 01L +...+04L%)ey

o0
= z :ngt—J
j=0

% Using invertibility, we can rewrite the
model as a AR(»)

gt = (L+01L +...40LD) (1 - ¢1L —...—¢pLP)Y,

Et = Z—ﬂ'th_j, 1.e. Yt = Zﬂ'th_j + £t
j=0 j=1



Given stationarity,

Mean:
E(Yt) E(C + (/)1Yt_1 +.. .+¢th_p

+et + 01611 +. .. +0gEtq)

=C+@Pr1u+...+¢pu+0+...40

HL=C+oiu+...+¢pu
C

S T F—

Autocovariances
The autocovariances are a combination
between those of an AR(p) and a MA(q), so for

] >0q
Yi = @17j-1 +...+9pYjp



For example, ARMA(1,1),
Yy = C+ ¢Yt—1 + &t + 0g1q (|¢| < 1)
first notice that

E[(Yt—u)et]
= E[(@(Yt-1 — ) + &t + Oc1) 1]
— 0 +0°+0= 0"
E[(Yt — p)era]
= E[(¢(Yie1 — 1) + €t + Oet-1)€t-1]
$c? +0 +00% = (¢+0)c?

SO
Yo = E[(@(Yi1 — p) + &0+ Oer-1) (Y — 1) ]
= ¢E[(Yer — ) (Yt — )]
+E[et(Yr — )] + OE[era(Ye — )]
= @dy1+0%+0(¢ +0)o?
= @dy1+02(1+ ¢0 + 0%)

y1 = E[(Yt— ) (Y — p)]
= E[¢(Yt1 — 1) (Y1 — 1) ]
+E[et(Ye1 — ) ] + E[0eta(Yia — )]
= @dyo+0+0c% = ¢yo + 002



SO
Yo = ¢(dyo + 00?) + c?(1+ @0 + 02)
= @%yo+02(¢0 + 1+ @0 + 6?)
o?(1+ 290 + 6?)
1— ¢2
6%(1— 2 + ¢? + 290 + 0?)
1— ¢2

— 62<1+ (?__'__ZZZ )

and



The autocorrelations can be derived in the
same way: for the generic ARMA(p, ), for

I>q
pi = P1pj-1 +...+PppPjp
In particular, for the ARMA(1,1),

py = (0+¢)(1+09)
1+ 0% + 2¢0
Piz2 = PPj-1

Impulse response function
Given stationarity, inverting ¢(L)Y: = 0(L )¢t

Y = ¢(L)'0(L)e
p(L)7O(L) = w(L)
O(L) = ¢(L)y (L)
(1+61L +...464L9Y)

= (1= @1l —....—¢oLP)
x (1+wil +wol? +ywsl3+...)



1+01L + 0202+ 03L3 +...+04L9
=1- gblL + l//lL — ¢2L2 — g[)ll/llLZ + l//2L2

— ¢3L3 — ¢)21/11L3 — g[)ll/lzLB + l//3L3. .
solve this for the various powers of L :

1O 1=1
L : —§b1+l//1=91,SOW1=91+¢1
L2 . —do—Pry1+y2 =0y,

SOy2 = 02+ Pry1 + ¢
L3 —d3—day1—drw2+y3 = 03,
soy3 =03+@3+ dow1+dry2

In the ARMA(1,1) case, then,
w1 =0+9,
Yis2 = Wi1d ie. wisz = (0 + ¢)pl™t



The ARMA(1,1) could also be decomposed in impulse
responses by looking at

Yi = ¢Yi1 + & where &y = g1 + Ogt1
(and 4 = Oto keep notation short) Then,

Ye = ZMH - Zqﬂ (e +Ogri1)
=0 =
= 2 den +92¢,8H 1
j=0 j=0
=O =1

=&+ (0+9) D P en
j=1



Common Factors

in ARMA modelling, it may be that the same factor
appears both in ¢(L) and of 6(L): in this case, the
ARMA(p, ) process cannot be distinguished, on the
basis of the autocorrelation structure (or from the

weights in the MA(«) representation), from an
ARMA(p—-1,q-1) process.

In this case, it is sometimes also said that the model
ARMA(p, Q) is overparametrised.

The ARMA(p,g) model may be simplified (and indeed
it may desirable to do so, especially if the parameters
¢1,...,¢p and O1,...,04 have to be estimated).



Example:

Yi = 1.2Ye1 —0.35Yr2 + 6t — 0. 7611
is
Yi—1.2Y11 + 0.35Y2 = €t — 0. 7et-1
(1-1.2L+0.35L2)Y; = (1-0.7L)ey
(1-0.7L)(1-0.5L)Y; = (1 - 0.7L )&y

so, simplifying (1 — 0.7L), the process has the same
autocorrelation structure (and the same weights in the
MA () representation) of

(1-0.5L)Y; = &
1.e.

Yt = Q. 5Yt_1 + £t



A final comment on stationary and

invertible ARMA.

We already saw that for a stationary ARMA(p, g), it is
also possible to give a MA(x) representation; in the
same way, it is also possible to give an AR()
representation (indeed, this is a proper definition of
"invertibility"). All these models have the same
autocovariances / autocorrelation structures, and are
therefore indistinguishable.

We can choose the representation that is more
convenient for our purpose: for example, we may like
the MA(x) if we are interested in the impulse
rensponse function, the AR(x) if we want to compute
gy given observations on {Y:}” (and assuming we
know the parameters), or we may prefer the
ARMA(p, g) if we are interested in estimating the
parameters.



Stationary and ergodic ARMA.

Let

Yt = 01Yt1 +. .. +PpYip + €t + 01611 +.. . +0q€tq

for any t and assume also that {Y;} is stationary and
{€t} is independently and identically distributed with
E(¢:) = 0and E(¢f) = 02 (.i.d.(0,0?)).

Then Y stationary and ergodic.



Sum of ARMA processes

Sometimes processes are obtained as sums of other
processes, for example we may be looking at the
dynamics of an aggregate process composed of
individual processes.

Example:
Yi = Xt + Vi
where
Xt = Ut + OUt1

and Ut is w.n.(0,03), Vi is w.n.(0,62),
E(uiv;) = Oforallt, .

What are the properties of Y;?



E(Y:) = Oforallt
vo = EQXt + V)% = E(X?) + E(V3) + 2E(X¢t)

= (1+6%)05 + 07

y1 = E[(Xi + Vi) (X1 + Vie1) ]
= E(XiX21) + E(ViXi1)
+ E(XiVie1) + E(ViVie1)
= 503
Yiz2 = 0
So Yt is MA(1), i.e., we can represent it as
Yi = €t + Oe1

where ¢t is wn(0,c2).



Check:

Given §, 63 and 07, we want to characterise 8 and
o2. From y1 and y2 compute

2
00

p1= (1+6%)o5+ 08
Since in a MA(1)
0 _
1102 P?
we can derive 0 solving
0 _ 00

1+602 (1+62)02+02

and then we can derive ¢, for example from
y1 = 0c?, so

0% = %Gﬁ.

Notice that ¢t is not Ut + Vi.



In general, consider
Yt = Xt + Wt

where X; and W are (zero mean) stationary
processes such that X; and W; are not
correlated at any t, 7, then

E(Yth_j) = E(tht_j) + E(WtWt_j)

. Y _ X W
1.€. ’}/J —)/J +)/J

Sum of two MA processes
If Xiis MA(Qg1) and W; is MA(Q2), then Y; is
MA(max[q1,02])



Sum of two AR(1) processes
Yt = Xt + Wt where

A-7L)Xe =u, (1-pL)Wr =Vt (7 # p)
then
(1-pL)A-7L)X: = (1- pL)us
(1-pL)(1—7L)W; = (1 —7L)wy
(1-pL)(1—7L)(Xe + Wh)
= (1-pL)ut+ (1 —7L)v
so Ytis ARMA(2,1).

Note: (If p = 7, Yy is AR(1))



Check:
(1 — pL)Ut + (1 — 7Z'|_)Vt
is the sum of two MA(1), so this is also an MA(1)

gt + Oei 1
with
0 _ po§ + mog
1+0%2 1+ p?)oi+(1+n?%)o?
and

o+ ol
52 — P - _
Finally, recalling Y: = (Xt + W),
(1-(p+n)L+ prL?)(X; + Wr)
= (1-(p+m)L+ prL?)Y;
= (1-¢1L — $2L?)Y;
simply setting

o1 =(p+m), ¢p2=—pn




Sum of two ARMA processes

If X; is ARMA(p1,01),
Wi is ARMA(p2,02),
then Y; is ARMA(p,q) with

P < pP1+P2

and

q < max(p1 + gz,P2 + Q1)



Signal extraction.

Sometimes the process that we observe is a sum
because it is the sum of the process that we are
interested in, and of a disturbance. Suppose we are
interested in X, but we can only observe Y;

Yi = Xt + Vi

where V; is a disturbance.

For example, X; may be the "core inflation" and "v;"
is a disturbance.



Does averaging reveal a signal?

One common practise is to measure the inflation
taking the average over some months: for example,
with monthly data, this is done taking the inflation
rate over the last year.

Suppose V; is wn(0,52), and consider

(as in average of quarterly or monthly data to a
yearly basis): this is now a MA(K).

Therefore, averaging induced
dependendence where there was none.

k-1

In the same way, + Z Xt-j also increases the
j=0

dependence of X;.

So, the "mnew" process will in general have more
dependence (when we look at monthly or
quarterly series), but this has been introduced
artificially, and it may have nothing to do with the
core inflation.



Consider again the example of a MA(1)+wn
process. As we observe Y;, we can estimate 0 and
o2. However (without an identification
assumption), we cannot estimate 6, 65 and o¢ . In
other words, Y: contains less information than X;
and V.



Forecasting with ARMA
models

Recall that the best linear forecast of Y1 using Y;
yu o ,Yt—m+1

is obtained setting

/ Yo Y1 v Ym2 Ym1 \_1/ )4 \

Y1 Yo cvr Ym3 Ym2 Y2

Ym2 7Vm3 ... Yo Y1 Y m-1

\Ym—l Ym2 ... Y1 Yo / Ym /

This may be heavy to compute, as, when mis large, it
requires the inversion of an m x mmatrix.

If we know that {Y{} _ is a stationary invertible
ARMA process, we can use this information to
simplify this forecast.



* EXAMPLE: AR(p).

If {Yi} . is AR(p) and m > p,

ie, using the parameters of the AR(p), which means
that we do not need to invert an m x mmatrix.

* EXAMPLE: MA(1),
approximation to the optimal
forecast.

Let Y1, be the forecast of Yi.1 if &1 was observable.
Then
/Y\t+l|8t — 98t~

If the process is invertible,

o0

1 _ v
A JZ_;(_Q)JYH

so, if we had the infinite past of Y;, then &: would be
observable, i.e.,

j=0



Of course, we do not have an infinite number of past
values for Y:. However, if we assume that

Eo = 0
then we can Compute
/8\1 = Y1, ?,‘\2 — Y2 — 9Y1,...

(the notation € means that this was computed using
the assumption g = 0). Iterating, we can compute €t
using Yy, .., Yt, SO

Yiiif,...Leo=0 = Y1z, = 0€t

This is an approximation to the optimal forecast
(because it depends on g9 = 0, which is not usually
true), but one that is worth considering, because it
means that we do not need to invert a t x t matrix.

What is the error that we make if we assume ¢g = 0
when it is not? Setting o = 0is equivalent to setting

Y_1 = Y2 =...= 0. As these have weights (-0)"",

(-0 .ing = Z(—O)th_j, then (-0)"* - 0 very fast
j=0

as tis large and |0| < 1, and the approximation error is

therefore little.



* EXAMPLE: ARMA(p, ), approximation to the
optimal forecast.

The approximation to the optimal forecast for an
ARMA(p, ) may be computed in the same way.

% In fact, in practice the parameters ¢y, ..., ¢p, 01, ..., O,
are not known, and must be estimated. Many
estimation algorithms also generate the series €3, ..., €71
as part of the computation.



Forecasting with ARMA models
Example 1. AR(p)

Compute the best linear forecast, Yi,1y.., assuming

Yi = 2+ 0.2Yi1 — 0.4Y» + &t where & is white noise
Yt - 5/ Yt—l — _2/ Yt—2 - _1/ Yt—3 =1
Yotrrirors = 2+0.2x5-0.4x (-2) = 3.8

Notice that only up to p = 2 observations are used
for the forecast, Y 1pt-1t2t-3... = Ytrpt1.

Example 2. MA(Q) part 1

Compute an approximation to the best linear
forecast of Y1, assuming

Yi = 1+ &¢ + 0.5¢1-1 where ¢ is white noise
2y = 0.77930.
Then
Y, = 4+ 08 = 1+0.5x0.77930 = 1.38965



Example 3. MA(Q) part 2

Compute an approximation to the best linear
forecast of Y1, assuming

Y: = 1+ &t + 0.5¢1_1 where ¢t is white noise

and

t 10 9 8 7 6 5 4 3 2 1
ye 20 1.5 05 00 1.5 1.0 05 0.0 1.0 2.0

Setting €9 = O, and focussing on t = 10, then
/8\1 = (Y1 —u) =1
€o2=o—pu)-0(Y1—u)=0-05x1=-0.5,...

t .
gt =D (-0) (Y —pu) = 0.77930,
i-0

= u+aP(Ye— @) +aP Vs —p) +.. 42 (Y1 — )
=1+05x1-0.25x0.5..... —0.00074 x 1
= 1.389084



hree ways to check
stationarity,
a summary

® Check moments
E(Y:) = u (i-e., constant) for any t

E[(Yi—u)(Yej — )] = 7j (i-e., constant) for any t
(it may change with )

® Check MA representation

A sufficient condition is checking if we can write
Yi = u+ D yjerj, where D yf < oo
j=0 j=0

and ¢ is white noise

® Check roots of AR polynomial
for any ARMA

Yt = C+P1Ye1 +...+PpYip + &t +... +0gE1q

where ¢t is white noise, sufficient condition is that
the roots z1,...,7, of

1-¢1z—...—¢pZ° =0

are all outside of the unit circle.



