Homework - Sept 27, 2020 - Advanced Multivariate Statistics <u>Instructor: Giancarlo Manzi</u> <u>Master in Data Science & Economics</u> NOT MANDATORY!

Must be done alone. Maximum score: 1 point. If you have questions, please contact the instructor for assistance.

Issued: Sunday, September 27th, 2020 Due: Wednesday, September 30th, 2020

Part a: (*Checking if a function is a proper density and using the moment generating function. Solutions should be found via* **R**).

Consider the following function:

$$f(x) = \begin{cases} \frac{1}{7} & 0 \le x \le 7\\ 0 & \text{otherwise} \end{cases}$$

- (i) Check whether it is a proper density.
- (ii) Plot it.
- (iii) If it is a density, what is the random variable having this density?
- (iv) Compute the moment generating function for this r.v. evaluated at 1.

Hints: for (i) use the integrate() R function; for (ii) use the curve() R function; for (iv) use the distr6 library.

Part b: (*Finding distributions of transformations of a multivariate normal. Solutions should be found by hand*).

Let $\boldsymbol{x} \sim N_4(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

- (i) Find the distribution of $(x_1, x_4)'$.
- (ii) Find the distribution of $x_2 x_4$.

```
******
```

Find the sample mean vector and the sample covariance matrix for the following observa-

tions			
	x_1	x_2	x_3
	12	10	8
	11	8	11
	8	5	11
	14	11	13
	10	$\overline{7}$	6

A script containing the R code and a MS word file with solutions should be sent to gian-carlo.manzi@unimi.it.

Please give your student ID number in your message.

Suggested Reading:

R package distr6. In particular:

- https://alan-turing-institute.github.io/distr6/articles/webs/ constructing_a_distribution.html about how to construct a distribution object.
- https://alan-turing-institute.github.io/distr6/articles/webs/ statistical_methods.html about how to get statistical methods from distributions.