Lecture 19 - 18-05-2020

k(z,z") =< ¢(z), p(a") > ¢p: X - H

where X — R? and H — barraRY
N
Hs; = {Z o ks(zi,-), 21, ..., zn € RY ay,...ay, N € N}
i1

Inner product measures "similarities" between data points.

vV = |z ||2]| cos® xe X k(z,a)

k sais how much similar are the structure (tree, documents etc).
I would like to learn a predictor based on the notion of similarity.

k(z, ') =< ¢(x), o(a') >

where <> is the inner product.

So we have Data — Kernel — Kernel learning Algortithm

Kernels offer a uniform interface to data in such way they algoriithm can
learn from data.

Given K on X, I need to find dH;,, ¢ X — H,

d< .. > S.b k?(l‘,l‘/) =< gbk(l‘),qf)k((ﬂ/) >k

Theorem

Given K : X x X — R, symmetric

Then K is a Kernel iif Vm € N Vzy, ...z, € X

The m x m matrix K K;; = k(x;,x;) is positive semidefinite

Yo € R™ o' Ka>0

In general, given a Kernel K there is not unique representation for ¢, and
< ... > (inner product).

However, there is a "canonical" representation: ¢y (x) = K(z,-)

N
op: X - H H, = {Zaik(xi, J,aq, ., ay €ER xy, .,y € X, N € N}
i=1

We have to define an inner product like:
< ok(2), Pp(2") > = k(z,27)

This is the canonical representation that helps mapping.



What happen to use this mechanism to perform predictions?
reRweR wlz where g = SN o k(x, )

or(z) g€ Hy < g on(x) > = <> aik(wi, ), grlx) > =

We have to satisfy allinearity
= Z oy < k(l’l, ')7 k’(l’, ) > = Z a; < ¢(xl)7 ¢k<x> > = Z aik(xia x) = g(fE)

At the end we have:
< g,0x(x) > = g(x)

Now, if i have two functions:
N M
F=> aik(zi,) g=> Bk}  fgeH
i=1 j=1

< L9 >e=< Y aik(zi )Y Bk, ) me= > ;B < k(zi, ), k(2] > =

= DD 0Bk z))
(Y
AP =< f,f >k=")_ cia;k(w;, x5)
]
Perceptron convergence theorem in kernel space:
M < ||U]*(max [|z.[|*)  YueR? yu' x> lquadvg € Hy yog(e) > 1

we know that:

2]~ llor(zo) I} = < dr(@r), du(cw) >k = k(g z4)

SO
... MANCA ULTIMA FORUMA

Ridge regression:
w=(al+8T8)" 5Ty



S is m x d matrix whose rows are the training points 1, ..., x,, € R?
y= (Y1, Ym) ¥ € R? training labels o > 0

(@l +578)7" s = 5T (al,+557)"
where d x d and d x m = d x m and m X m

ST = w1,y zm] ~ [ (i), ooy O(zm) ] = [ k(z1,-), oy k(kmy ) ] = k()
KO (@l +K)y =g

where 1 x m and m x m and m x 1

How to compute prediction?
g(x) =y (L + K) ' k(z)

1 xm and m x m and m x 1
In fact, is the evaltuation of ¢ in any point x.
The drawback is that we pass from d x d matrix to a m X m matrix that can
be huge. So it is not really efficient in this way, we need to use addictional
"tricks" having a more compact representation of the last matrix prediction.



1.1 Support Vector Machine (SVM)

It is a linear predictor and is a very popular one because has better perfor-
mance than perceptron and we will see it for classification but there are also
version for regression.

The idea here is that you want to come up with an hyperplane that is defined
as a solution of an optimisation problem.

We have a classification dataset (z1,91)...(Zm, Ym) r €RY oy, €{-1,1}
and it is linearly separable.

Sum as the solution w* (optimisation problem) to this problem:

1
min —||w||? st oywlz,>1 t=1,2,..m
weRd 2

Geometrically w* corresponds to the maximum marging separating hyper-
plane like:

v = max y,u' 2y t=1,...m
uillul=1

*

u* is achieving +* is the maximal margin separator.
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Figure 1.1: Draw of SVG

So I want to maximise this distance.

max 7y° st ul*=1 yutx, >y t=1,...m
>0

So we can maximise instead of minimising.

What is the theorem? The equivalent between this two.

Theorem:

V linear separator (z1,41)...(Tm, Ym)

The max margin separator u* satisfies u* = ~* w* where w* is the SVM
solution and v* is the maximum margin.



