
Lecture 24 - 09-06-2020

1.1 Neural Networks

1.1.1 Feedforward NN

f : Rd → Rn

Done with a combination of preditors.

g(x) = σ(wT x) σ is a nonòinear activation function

Entire structure is a DAG:

G = (V,E) DAG directed and acyclic graph

Figure 1.1:

Multilayer NN (special case of Feedforward)

Figure 1.2:

Computing a function:
g(·) = σ(wT ·)

where · is the input of the previous layer.
We are going to split the nodes:

V = Vm ∪ Vhid ∪ Vout |Vin| = d

If (i, j) is an edge:

(i, j) ∈ E ⇒ wij ∈ R where i and j are nodes

1

W weighted matrix:
wij = 0 if (i, j) 6∈ E

We have then G,w, σ parameters that de�ne a function compute by the
network:

fG,w,σ : Rd → Rn

Let's pick any node j that j ∈ V \ Vin:

w(j) : {wij : (i, j)

Figure 1.3:

MANCAAAA

Each node j has a state value which is evaluated during the computation
of the function.

Vj = σ(w(j)Tv(j))

Figure 1.4:

2

Figure 1.5:

Vi = σ(w(i)Tx) x ∈ Rd

fG,w,σ(x) vi = σ(w(j)Tv(j))

Figure 1.6:

fG,w,σ(x) = (v1, ..., vn) v1 = σ(w(j)Tv(j))

What are the parameters I learn?
G, σ �xed and w is trained.
I can de�ne a class F :

FG,σclass of all predictors fG,w,σ for w variable

σ is the identity and we can do other model like linear regression etc.

Figure 1.7:

3

Case of single output node:

Figure 1.8:

In classi�cation:
v0 = fG,w,σ(x) = sgn(w(0)Tv(0))

In regression:
w(0)Tv(0)

This depends on the problem. How do I choose the activation function σ?
Could be a Sigmoid or Relu (0 in negative and 1 positive part) or other
variant of this like Leaky Relu.
The �rst one is bounded the other one are not.

Figure 1.9:

How many layers?
How many nodes in each layer?
Patter connectivity between layers?
Activation function?
In order to de�ne our class FG,σ: we are gonna ask ourself some structural
question. How many layers do I need in general? Is there a minimum range
of layers?

4

Theorem

∀ d ∃G = (V,E) with d+ 1 input nodes, one hidden layer, one output node

s.t FG,sgn contains all function of the formf : {−1, 1}d → {−1, 1}

Proof

Figure 1.10:

f : {−1, 1}d → {−1, 1}

x̄1, ..., x̄N f(x̄i) = 1 N ≤ 2d

The i-th hidden node computes the function:

gi(x) = sgn(x̄T x̄i − d+ 1) x̄ x̂(x̄, 1)

w(i) = (x̄i,−d+ 1) w(i)T x̂ = x̄T x̄i − d+ 1

Figure 1.11:

xTxi =

{
d if x = xi

≤ d− 2 if x 6= xi

5

Let's see the output layer

f(x) = g1(x) ∨ ... ∨ gN(x)

Figure 1.12:

The function compute by the output node is :

sgn(w(0)Tv(0)) =
N∑
i=1

gi(x)wi,0 +N − 1

where
∑N

i=1 gi(x)wi,0 is equal to −N + 1 to obtain 1.

x s.t f(x) = −1 g(x) = −1 i = 1, ..., N

x s.t. f(x) = 1 ∃i : gi(x) = 1

I can de�netely use more than one layer since exponential is not good. Maybe
you can use fewer node, still potentially able to generate a classi�er.

Theorem

∀d ∈ N let s(d) be the smaller integer
s.t. ∃ G = (V,E) with |V | = s(d)

s.t. FG,sgn contains all functions f : {−1, 1}d → {−1, 1} then |V | = Ω(2
d
3)

If inputs are not binary we will use a sigmoid function. So 1 hidden layer is
enought to approximate all function of the form:

f : [−1, 1]d → [−1, 1]

If you want to learn everything you need an exponential number of nodes.

6

1.2 Deep Learning

I have many hidden layers, not too many nodes in each layer.
I am choosing G with a speci�c pro�le (tall and skinny network).

FGdept,σ compared with FGfat,σ

Figure 1.13:

Usually, the �rst one should be the better one.

|V ′| > |V | G→ G′ FG,σ

Either increase size of 2 layer or add more layers:

|FG′,σ| � |FG”,σ|

where G′ are new layers and G” are the fatter layers.

7

1.2.1 Convolution Neural Network

Figure 1.14:

== MANCAAAA FOTO GiUSTA ====

Using convolutional NN. We will recognise some shape (like presence of an-
gles or simple geometric form obtained by combine the edge detector in the
previous layers. If you have several layers you can have more more speci�c
shapes combine the previous simpler layers.

1.2.2 General infos about Neural Networks

NN are trained using stochastic gradient descent.

W wij ← wij − ηt
ð`zt(w)

ðwij

Zt is randomly drawn from training set.

`t(w) = `(fG,w,σ(xt), yt) ∀(i, j) ∈ E

We have ∇`t(w)

The gradient component
ð`zt (w)
ðwij

(i, j) ∈
√
s is computed using a technique

called "error backpropagation"
`t(w) is not convex! Gradient descent will not terminate in:

w∗ = argmin
w

ˆ̀
s(w)

AutoML to determine hyperparameter!

8

Figure 1.15:

9

