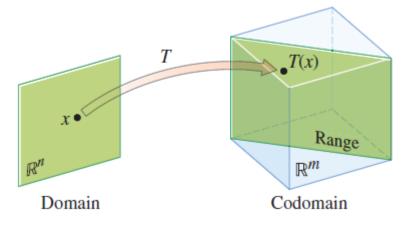
GTDM - 2019/20

LINEAR TRANSFORMATIONS

Based on Linear Algebra and Its Applications, David C. Lay, Steven R. Lay, and Judi J. McDonald, PEARSON 5th ed.

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m



The set \mathbb{R}^n is called the **domain** of T, and \mathbb{R}^m is called the **codomain** of T. For **x** in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of **x** (under the action of T). The set of all images $T(\mathbf{x})$ is called the **range** of T.

Linear Transformations

Linear Transformations satisfy:

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$$

- u and v are vectors
- a and b are scalars

Linear mapping T from R^n to R^m can be expressed by using a *m* x *n* matrix A.

Example. The linear transformation T from R³ to R² is defined as,

$$\mathsf{T}\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = \begin{pmatrix}u_1 + 2 \ u_2\\3u_2 + 4u_3\end{pmatrix}$$

Can be written as
$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 4 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$

For each **x** in Rⁿ, T(**x**) is computed as A**x**, where A is an m x n matrix. For simplicity, we sometimes denote such a *matrix transformation* by $\mathbf{x} \rightarrow A\mathbf{x}$.

111 \

Example.

Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, and

define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 1 & -3\\ 3 & 5\\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2\\ -1 \end{bmatrix} = \begin{bmatrix} 5\\ 1\\ -9 \end{bmatrix}$$

Solve T (\mathbf{x}) = **b** for **x**, that is, solve A**x** =**b**, means to find an **x** whose image under T is **b**.

Remark. The question of a *uniqueness* problem for a system of linear equations, translated here into the language of matrix transformations: Is **b** the image of a *unique* **x** in \mathbb{R}^n . Similarly, for the *existence* problem: does there *exist* an **x** whose image is **b**?

Identity matrix
$$I_n = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$
, for example $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Usually want a "formula" for $T(\mathbf{x})$, Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is actually a matrix transformation $\mathbf{x} \to A\mathbf{x}$ and that important properties of T are intimately related to familiar properties of A.

The key to finding A is to observe that T is completely determined by what it does to the columns of the n x n identity matrix I_n .

Example. The columns of
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Suppose T is a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 such that

$$T(\mathbf{e}_1) = \begin{bmatrix} 5\\-7\\2 \end{bmatrix} \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} -3\\8\\0 \end{bmatrix}$$

With no additional information, find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2 .

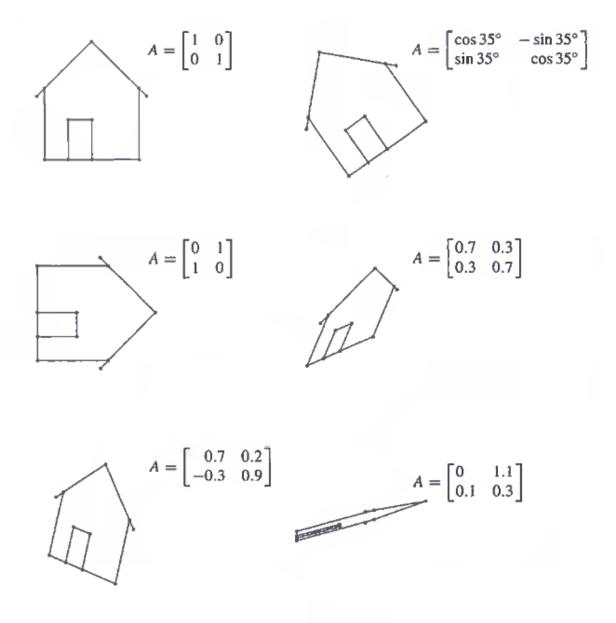
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

Since T is a *linear* transformation,

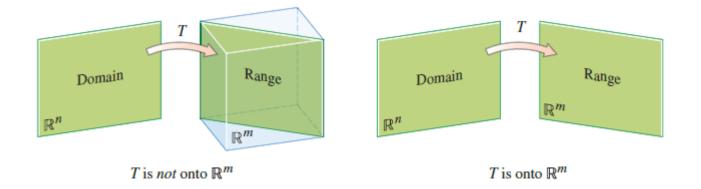
$$T(\mathbf{x}) = x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2)$$

= $x_1 \begin{bmatrix} 5\\-7\\2 \end{bmatrix} + x_2 \begin{bmatrix} -3\\8\\0 \end{bmatrix} = \begin{bmatrix} 5x_1 - 3x_2\\-7x_1 + 8x_2\\2x_1 + 0 \end{bmatrix}$

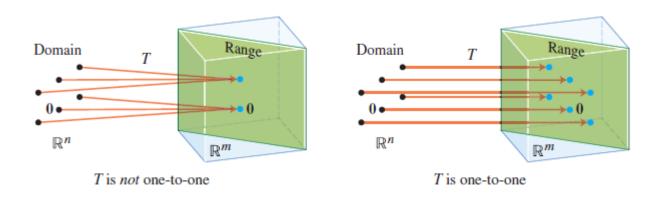
Examples of transformations $\mathbf{R}^2 \rightarrow \mathbf{R}^2$ with their associated matrices.



A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of *at least one* **x** in \mathbb{R}^n .



A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of *at most one* **x** in \mathbb{R}^n .



Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then *T* is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

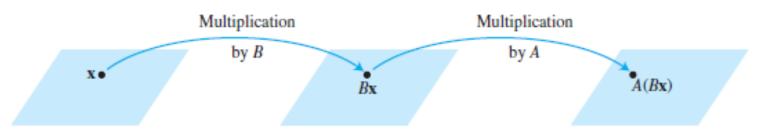
Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:

- a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- b. T is one-to-one if and only if the columns of A are linearly independent.

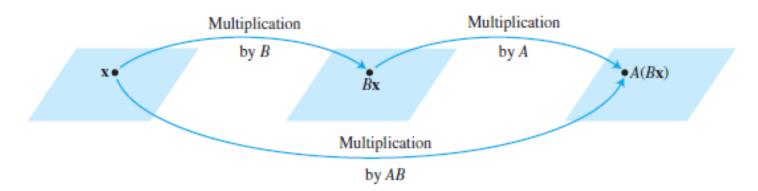
Matrix Multiplication

When a matrix B multiplies a vector \mathbf{x} , it transforms \mathbf{x} into the vector B \mathbf{x} . If this vector is then multiplied in turn by a matrix A, the resulting vector is A(B \mathbf{x})



Thus $A(B\mathbf{x})$ is produced from \mathbf{x} by a *composition* of mappings. Our goal is to represent this composite mapping as multiplication by a single matrix, denoted by *AB*, so that

$$A(B\mathbf{x}) = (AB) \mathbf{x}$$



Example. Compute *AB*, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$.

Write $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3]$, and compute:

$$A\mathbf{b}_{1} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad A\mathbf{b}_{2} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad A\mathbf{b}_{3} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 11 \\ -1 \end{bmatrix} \qquad = \begin{bmatrix} 0 \\ 13 \end{bmatrix} \qquad = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$$
Then
$$AB = A[\mathbf{b}_{1} \ \mathbf{b}_{2} \ \mathbf{b}_{3}] = \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$

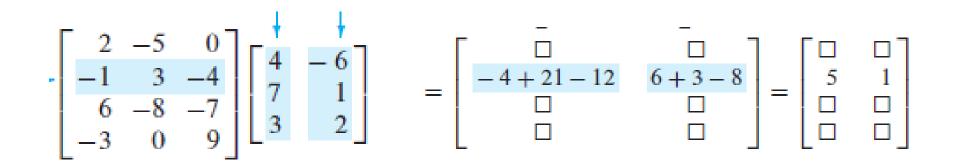
ROW-COLUMN RULE FOR COMPUTING AB

If the product *AB* is defined, then the entry in row *i* and column *j* of *AB* is the sum of the products of corresponding entries from row *i* of *A* and column *j* of *B*. If $(AB)_{ij}$ denotes the (i, j)-entry in *AB*, and if *A* is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

Example.

$$A = \begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix}$$



$$\begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix} \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -27 & -17 \\ 5 & 1 \\ 15 & 36 \end{bmatrix}$$

Powers of a Matrix

If A is an nxn matrix and if k is a positive integer, then A^k denotes the product of k copies of A

$$A^k = \underbrace{A \cdots A}_k$$

The Transpose of a Matrix

Given an m x n matrix A, the **transpose** of A is the n x m matrix, denoted by A^{T} , whose columns are formed from the corresponding rows of A.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, \quad B^{T} = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}, \quad C^{T} = \begin{bmatrix} 1 & -3 \\ 1 & 5 \\ 1 & -2 \\ 1 & 7 \end{bmatrix}$$

THE INVERSE OF A MATRIX

An n x n matrix A is said to be **invertible** if there is an n x n matrix C such that

CA =I and AC = I

where I is the n x n identity matrix. In this case, C is an **inverse** of A. In fact, C is uniquely determined by A, because if B were another inverse of A, then B = C: this unique inverse is denoted by A^{-1}

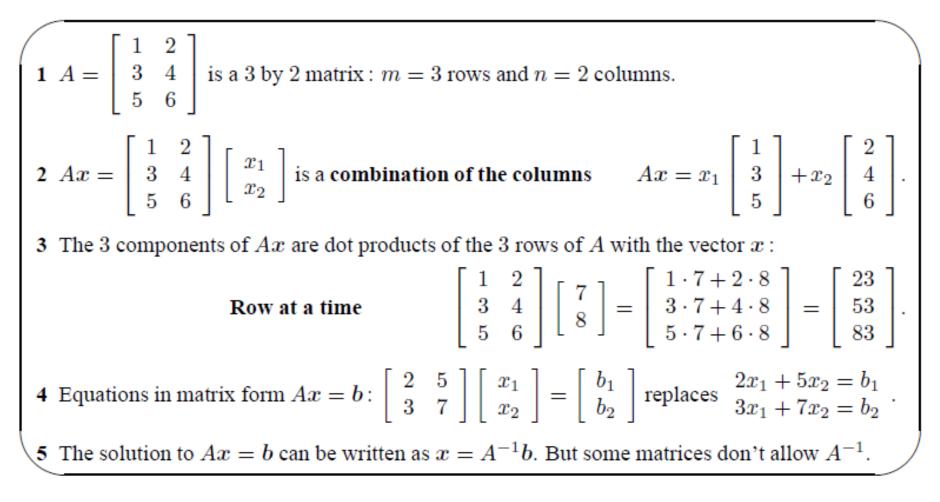
 $A^{-1}A = I \quad \text{and} \quad AA^{-1} = I$

Example.

If
$$A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
 and $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$, then
 $AC = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and
 $CA = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Thus $C = A^{-1}$.

Matrices



Inner Product of the Euclidean n-space

Rⁿ was defined to be **the** *set* **of all ordered n-tuples of real numbers**. When *Rⁿ* is combined with the standard operations of vector addition, scalar multiplication, **vector length**, and the **dot product**, the resulting vector space is called **Euclidean** *n*-space.

The dot product of two vectors is defined to be

 $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}_1 \mathbf{v}_1 + \mathbf{u}_2 \mathbf{v}_2 + \dots + \mathbf{u}_n \mathbf{v}_n$

The definitions of the vector length and the dot product are needed to provide **the metric concept** for the vector space.

The length of a vector $\mathbf{v} = (v_1, v_2, ..., v_n)$ in the Euclidean space \mathbf{R}^n is given by

 $\|\mathbf{v}\| = \sqrt{\mathbf{u} \cdot \mathbf{v}} = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$

Example

(a) In \mathbb{R}^5 , the length of $\mathbf{v} = (0, -2, 1, 4, -2)$ is given by

$$\|\mathbf{v}\| = \sqrt{0^2 + (-2)^2 + 1^2 + 4^2 + (-2)^2} = \sqrt{25} = 5$$

(b) In **R**³ the length of $\mathbf{v} = \left(\frac{2}{\sqrt{17}}, \frac{-2}{\sqrt{17}}, \frac{3}{\sqrt{17}}\right)$ is given by

$$||\mathbf{v}|| = \sqrt{\left(\frac{2}{\sqrt{17}}\right)^2 + \left(\frac{-2}{\sqrt{17}}\right)^2 + \left(\frac{3}{\sqrt{17}}\right)^2} = \sqrt{\frac{17}{17}} = 1$$

(v is a unit vector)

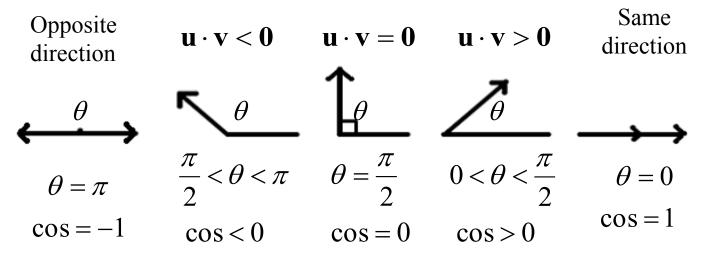
Lemma (Unit vector in the direction of **v**) If **v** is a nonzero vector in \mathbf{R}^n , then the vector \mathbf{v}

 $\mathbf{u} = \frac{\mathbf{v}}{\|\mathbf{v}\|}$ (normalization)

has length 1 and has the same direction as **v**. This vector **u** is called the **unit vector in the direction of v**.

The angle between two vectors in \mathbf{R}^n :

$$\cos\theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}, 0 \le \theta \le \pi$$



• Note:

The angle between the zero vector and another vector is not defined.

Axioms of inner product (more general than dot product)

Let **u**, **v**, and **w** be vectors in a vector space *V*, and let *c* be any scalar. **An inner product on V is a function that associates a real number <u, v> with each pair of vectors u and v** and satisfies the following axioms.

(1)
$$\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$$

(2) $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
(3) $c \langle \mathbf{u}, \mathbf{v} \rangle = \langle c\mathbf{u}, \mathbf{v} \rangle$
(4) $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ if and only if $\mathbf{v} = 0$

Note:

 $\mathbf{u} \cdot \mathbf{v} = \text{dot product (Euclidean inner product for } R^n)$ < \mathbf{u} , $\mathbf{v} >=$ general inner product for vector space V

• Ex: (A different inner product for **R**^{*n*})

Show that the function defines an inner product on R^2 , where $\mathbf{u} = (u_1, u_2)$ and $\mathbf{v} = (v_1, v_2)$.

$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2$$

Sol:
(a)
$$\langle \mathbf{u}, \mathbf{v} \rangle = u_1 v_1 + 2u_2 v_2 = v_1 u_1 + 2v_2 u_2 = \langle \mathbf{v}, \mathbf{u} \rangle$$

(b) $\mathbf{w} = (w_1, w_2) \Rightarrow \langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = u_1 (v_1 + w_1) + 2u_2 (v_2 + w_2)$
 $= u_1 v_1 + u_1 w_1 + 2u_2 v_2 + 2u_2 w_2$
 $= (u_1 v_1 + 2u_2 v_2) + (u_1 w_1 + 2u_2 w_2)$
 $= \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$

(c)
$$c \langle \mathbf{u}, \mathbf{v} \rangle = c(u_1v_1 + 2u_2v_2) = (cu_1)v_1 + 2(cu_2)v_2 = \langle c\mathbf{u}, \mathbf{v} \rangle$$

(d) $\langle \mathbf{v}, \mathbf{v} \rangle = v_1^2 + 2v_2^2 \ge 0$
 $\langle \mathbf{v}, \mathbf{v} \rangle = 0 \Rightarrow v_1^2 + 2v_2^2 = 0 \Rightarrow v_1 = v_2 = 0 \quad (\mathbf{v} = 0)$

Norm (length) of u from the inner product:

$$||\mathbf{u}|| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle} \qquad ||\mathbf{u}||^2 = \langle \mathbf{u}, \mathbf{u} \rangle$$

Distance between **u** and **v**:

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{\langle \mathbf{u} - \mathbf{v}, \mathbf{u} - \mathbf{v} \rangle}$$

Angle between two nonzero vectors **u** and **v**:

$$\cos\theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{||\mathbf{u}|| ||\mathbf{v}||}, \ 0 \le \theta \le \pi$$

Orthogonal nonzero vectors : $(\mathbf{u} \perp \mathbf{v})$

u and **v** are orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

Theorem

Let **u** and **v** be vectors in an inner product space V. (1) Cauchy-Schwarz inequality: $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$ (2) **Triangle inequality**: $||u + v|| \le ||u|| + ||v||$ (3) Pythagorean theorem : **u** and **v** are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$

For a norm, and a distance, there are many possibilities!

Properties of norm:

(1)
$$\|\mathbf{u}\| \ge 0$$
 and $\|\mathbf{u}\| = 0$ if and only if $\mathbf{u} = \mathbf{0}$

(2)
$$||c\mathbf{u}|| = |c|||\mathbf{u}||$$
 For any scalar c and vector **u**

(3) $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ For any vectors \mathbf{u} and \mathbf{v}

$$\begin{aligned} (1) \ \|(a_1, \dots, a_n)\| &= \sqrt{\sum_{k=1}^n |a_k|^2} \\ \text{Examples.} \qquad (2) \ \|(a_1, \dots, a_n)\| &= \sum_{k=1}^n |a_k| \\ (3) \ \|(a_1, \dots, a_n)\| &= \max_{k=1}^n |a_k| \\ (4) \ \|(a_1, \dots, a_n)\| &= \max_{k=1}^n k |a_k|. \end{aligned}$$

Properties of distance:

(1)
$$d(\mathbf{u}, \mathbf{v}) \ge 0$$
, and $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$

(2)
$$d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$$

(3)
$$d(\mathbf{u},\mathbf{v}) \leq d(\mathbf{u},\mathbf{w}) + d(\mathbf{w},\mathbf{v})$$

Orthogonal projections in inner product spaces:

Let **u** and **v** be two vectors in an inner product space V, such that $\mathbf{v} \neq \mathbf{0}$. Then the **orthogonal projection of u onto v** is given by

$$\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\langle \mathbf{v}, \mathbf{v} \rangle} \mathbf{v}$$

u

• Note:

If v is a init vector, then $\langle v, v \rangle = ||v||^2 = 1$. The formula for the orthogonal projection of **u** onto v takes the following simpler form.

 $\operatorname{proj}_{\mathbf{v}}\mathbf{u} = \langle \mathbf{u}, \mathbf{v} \rangle \mathbf{v}$

Example (Finding an orthogonal projection in R^3) Use the Euclidean inner product in R^3 to find the orthogonal projection of u=(6, 2, 4) onto v=(1, 2, 0).

Sol:

$$\langle \mathbf{u}, \mathbf{v} \rangle = (6)(1) + (2)(2) + (4)(0) = 10$$

 $\langle \mathbf{v}, \mathbf{v} \rangle = 1^2 + 2^2 + 0^2 = 5$
 $\operatorname{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v} = \frac{10}{5}(1, 2, 0) = (2, 4, 0)$

Note:

 $u - \text{proj}_{v} u = (6, 2, 4) - (2, 4, 0) = (4, -2, 4)$ is orthogonal to v = (1, 2, 0).

Orthonormal Bases

Orthogonal:

A set S of nonzero vectors in an inner product space V is called an **orthogonal set** if every pair of vectors in the set is orthogonal. $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\} \subseteq V,$

 $\langle \mathbf{v}_i | \mathbf{v}_i \rangle = 0 \quad i \neq j$

Orthonormal:

An orthogonal set in which each vector is a unit vector is $S = \{\mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_n\} \subseteq V$ called orthonormal. $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$

Note:

If S is a basis, then it is called an orthogonal basis or an orthonormal basis.

Theorem: If $S = \{u_1, ..., u_m\}$ in \mathbb{R}^n is an orthogonal set of nonzero vectors, then S is linearly independent and hence is a basis for the subspace spanned by S.

Definition: An **orthogonal basis** for a subspace W of \mathbb{R}^n is a basis for W that is also an orthogonal set.

Theorem: Let $\{\mathbf{u}_1, \dots, \mathbf{u}_m\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each **y** in W, the weights in the linear combination

$$\mathbf{y} = \mathbf{c}_1 \ \mathbf{u}_1 + \ldots + \mathbf{c}_m \ \mathbf{u}_m$$

are (uniquely) given by

 $c_{j} = \frac{\langle \mathbf{y}, \mathbf{u}_{j} \rangle}{\langle \mathbf{u}_{j}, \mathbf{u}_{j} \rangle} \qquad j=1,...,m$

Remark.

From a bases to an orthonormal Bases: the Gram-Schmidt Algorithm.

Example (A nonstandard orthonormal basis for R^3). Show that the following set is an orthonormal basis.

$$S = \left\{ \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right), \left(-\frac{\sqrt{2}}{6}, \frac{\sqrt{2}}{6}, \frac{2\sqrt{2}}{3}\right), \left(\frac{2}{3}, -\frac{2}{3}, \frac{1}{3}\right) \right\}$$

Solution,

Show that the three vectors are mutually orthogonal.

$$\mathbf{v}_{1} \cdot \mathbf{v}_{2} = -\frac{1}{6} + \frac{1}{6} + 0 = 0$$
$$\mathbf{v}_{1} \cdot \mathbf{v}_{3} = \frac{2}{3\sqrt{2}} - \frac{2}{3\sqrt{2}} + 0 = 0$$
$$\mathbf{v}_{2} \cdot \mathbf{v}_{3} = -\frac{\sqrt{2}}{9} - \frac{\sqrt{2}}{9} + \frac{2\sqrt{2}}{9} = 0$$

Show that each vector is of length 1: thus it is an orthonormal set

$$\|\mathbf{v}_{1}\| = \sqrt{\mathbf{v}_{1} \cdot \mathbf{v}_{1}} = \sqrt{\frac{1}{2} + \frac{1}{2} + 0} = 1$$
$$\|\mathbf{v}_{2}\| = \sqrt{\mathbf{v}_{2} \cdot \mathbf{v}_{2}} = \sqrt{\frac{2}{36} + \frac{2}{36} + \frac{8}{9}} = 1$$
$$\|\mathbf{v}_{3}\| = \sqrt{\mathbf{v}_{3} \cdot \mathbf{v}_{3}} = \sqrt{\frac{4}{9} + \frac{4}{9} + \frac{1}{9}} = 1$$

Example. (Representing vectors relative to an orthonormal basis) Find the coordinates of $\mathbf{w} = (5, -5, 2)$ relative to the following orthonormal basis:

$$B = \{ (\frac{3}{5}, \frac{4}{5}, 0), (-\frac{4}{5}, \frac{3}{5}, 0), (0, 0, 1) \}$$

$$\mathbf{w}, \mathbf{v}_1 \rangle = \mathbf{w} \cdot \mathbf{v}_1 = (5, -5, 2) \cdot (\frac{3}{5}, \frac{4}{5}, 0) = -1$$

$$\mathbf{w}, \mathbf{v}_2 \rangle = \mathbf{w} \cdot \mathbf{v}_2 = (5, -5, 2) \cdot (-\frac{4}{5}, \frac{3}{5}, 0) = -7 \qquad \Rightarrow [\mathbf{w}]_B = \begin{bmatrix} -1 \\ -7 \\ 2 \end{bmatrix}$$

$$\mathbf{w}, \mathbf{v}_3 \rangle = \mathbf{w} \cdot \mathbf{v}_3 = (5, -5, 2) \cdot (0, 0, 1) = 2$$

Orthogonal Matrix

• A square matrix A with the property

$$A^{-1} = A^T$$

is said to be an orthogonal matrix.

Remark

- A square matrix A is orthogonal if and only if $AA^T = I$ or $A^TA = I$.

- Example 1 $A = \begin{bmatrix} \frac{3}{7} & \frac{2}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & \frac{3}{7} \end{bmatrix} A^{T}A = \begin{bmatrix} \frac{3}{7} & -\frac{6}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ -\frac{6}{7} & \frac{3}{7} & \frac{2}{7} \\ \frac{2}{7} & \frac{6}{7} & -\frac{3}{7} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- Example 2

Rotation and reflection matrices is orthogonal.

$$A = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

Theorem

The following are equivalent for an $n \times n$ matrix A.

- A is orthogonal.
- The row vectors of A form an orthonormal set in Rⁿ with the Euclidean inner product.
- The column vectors of A form an orthonormal set in Rⁿ with the Euclidean inner product.

Moreover:

- The inverse of an orthogonal matrix is orthogonal.
- A product of orthogonal matrices is orthogonal.

Theorem (Orthogonal Matrices as Linear Operators)

- If A is an $n \times n$ matrix, then the following are equivalent.
 - A is orthogonal.
 - || Ax || = || x || for all x in R^n .
 - $-A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y} \text{ for all } \mathbf{x} \text{ and } \mathbf{y} \text{ in } \mathbb{R}^n.$
- Remark:
 - If $T: \mathbb{R}^n \to \mathbb{R}^n$ is multiplication by an orthogonal matrix A, then T is called an orthogonal operator on \mathbb{R}^n .
 - It follows from the preceding theorem that <u>the orthogonal</u> operator on *Rⁿ* are precisely those operators that leave the length of all vectors unchanged.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

The quantity ad-bc is called the **determinant** of A, and we write det A = ad-bc

Example.
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
 \longrightarrow $A^{-1} = \begin{bmatrix} -3 & 2 \\ 5/2 & -3/2 \end{bmatrix}$

If *A* is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.