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LINEAR TRANSFORMATIONS

Based on Linear Algebra and Its Applications, David C. Lay,
Steven R. Lay, and Judi J. McDonald, PEARSON 5%th ed.



A transformation (or function or mapping) T from R" to R™ is a rule that
assigns to each vector x in R" a vector T(x) in R™

::;’}.T(.I-}- i

.”_,.-"
xe

. Range
ﬂ” L

Domain Codomain

The set R"is called the domain of T, and R™ is called the codomain of T.
For x in R", the vector T(x) in R™M is called the image of x (under the action of
T). The set of all images T(x) is called the range of T.

Linear Transformations

Linear Transformations satisfy:
T(au + bv) = aT(u) + bT(v)
- u and v are vectors
- a and b are scalars



Linear mapping TfromR"” toR"™ canbe expressed
by using a m x n matrix A.

Example. The linear transformation T from R3 to R? is
defined as,

u
T u; _ (u1+2u2)
3u, + 4u,

Uz

Can be written as (2) = ((1) g 2) (&)
U3z

For each xin R", T(x) is computed as Ax, where Aisan m xn
matrix. For simplicity, we sometimes denote such a matrix
transformation by x — AXx.



Example.

1 -3 ) 3 3
Let A = 3 5 ,u:[_l],b: 2 {,e=121, and
—1 7 -5 5

define a transformation 7 : R? — RJ by T(x) = Ax, so that

1 -3 xl—3JCg
T(X)AK|: 3 5:|[':']{3x|+5x3i|
—1 7 2 —Xx1+ 7x>
[ 1 3} 5 5
T(n) = Au = 3 5 [l]|: l}
-1 7 -9

Solve T (x) = b for x, that is, solve Ax =b, means to find an x whose
image under T is b.

305 [;ﬁ;]: 2 ‘ -5



Remark. The question of a uniqueness problem for a system of linear
equations, translated here into the language of matrix transformations: Is b
the image of a unique x in R". Similarly, for the existence problem: does

there exist an x whose image is b?

1 - 0

1 0 O
|ldentity matrix I, = [ ] , for example I; = (O 1 0)
0o - 1 0 0 1

Usually want a “formula” for T(x), Every linear transformation from R" to R™
Is actually a matrix transformation x — Ax and that important properties of T

are intimately related to familiar properties of A.
The key to finding A is to observe that T is completely determined by what it

does to the columns of the n x n identity matrix | ..



1 0 1
Example. The columns of I, = I:G ]} are e) = [0} and e; =

Suppose T is a linear transformation from R? into R? such that

5 —3
T(e))=| -7 and T(ey) = 8
2 0

With no additional information, find a formula for the image of an arbitrary x in R?.

; 1 0
X = I::] leliﬂ:l—l-xz[l] = X1€] + X2€;

Since T 1s a linear transformation,

T'(x)= xlT{EI}‘—F x2T (e2)

5 —3 5_3’-..'| — 312
=X -7 1+ Xa 8 = —?I| + SIQ
2 0 2x;4+0



Examples of transformations R? - R? with their associated matrices.

A= c0535° —sin35°
~ | sin 35° cos 35°
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A mapping T : R" — R"™ is said to be onto R™ if each b in R™ is the image of
at least one x in R".

T is not onto R™ T is onto R™

A mapping T : R" — R™ is said to be one-to-one if each b in R™ is the image
of at most one x in R".

T 1% not one-to-one T 15 one-to-one



Theorem

Let T : R" — R™ be a linear transformation. Then T is one-to-one if and only if
the equation 7'(x) = 0 has only the trivial solution.

Theorem

Let 7T : B" — R™ be a linear transformation, and let A be the standard matrix for
T . Then:

a. T maps R" onto R™ if and only if the columns of A span E™;

b. T is one-to-one if and only if the columns of 4 are linearly independent.



Matrix Multiplication

When a matrix B multiplies a vector x, it transforms x into the vector Bx. If
this vector is then multiplied in turn by a matrix A, the resulting vector is
A(Bx)

Multiplication Multiplication
~ byB '

Xe .

Bx A(Bx)

I'H]r'_ﬁ._ e

Thus A(Bx) is produced from x by a composition of mappings. Our goal is
to represent this composite mapping as multiplication by a single matrix,
denoted by AB, so that

A(Bx) = (AB) x

Multiplication Muluplication

byB CbyA

Bx 4 »

Multiplication - _

by AR



2 3 4 3 6
Example. EnmputeAH,mhereA_[] _5:|andﬂ_[1 5 3]_

Write B =[b; bz b;], and compute:

w=[7 S3]0) =7 S)S) =3 S]0S)

1 l T
Then
11 0 21

I

ROW-COLUMN RULE FOR COMPUTING AB

If the product AR 1s defined, then the entry in row i and column ;j of AB 1s the
sum of the products of corresponding entries from row / of 4 and column j of
B_If (AB);; denotes the (7, j)-entry in AB, and if A4 15 an m x n matrix, then

(AB)i; = anbyj + aizby; + -+ + @inby;
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Powers of a Matrix
If A is an nxn matrix and if k is a positive integer, then Ak denotes the

product of k copies of A

A=

The Transpose of a Matrix
Given an m x n matrix A, the transpose of A is the n x m matrix, denoted

by AT, whose columns are formed from the corresponding rows of A.
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THE INVERSE OF A MATRIX
An n x n matrix A is said to be invertible if there is an n x n matrix C such

that
CA=land AC =1

where | is the n x n identity matrix. In this case, C is an inverse of A. In fact,
C is uniquely determined by A, because if B were another inverse of A, then
B =C : this unique inverse is denoted by A"

A'A=T and AA ' =1

[ 2 5 -7 -5
Example. IfA4= _a _?}mldf'_ 3 2]_l‘_‘twu
2 5][-7 =5]_[1 o]
AC=13 7)[ 3 2)[0 1] ™
-7 =57 2 s]_J1 o]
L‘ﬂ'__ 32| -3 -7 |0 1]

Thus C = A~ L.



Matrices

a 1 2
1 A=| 3 4 |isa3dby2maftrix: m = 3 rows and n = 2 columns.
5 6
1 2 _ 1 2
2 Ar=1| 3 4 [ . ] 15 a combination of the columns Ar =z | 3 |+x2 | 4
L2
2 6 5 6
3 The 3 components of Ax are dot products of the 3 rows of A with the vector & :
1 2 - 1-74+2-8 23
Row at a time 3 4 [8]: 3-T+4-8 | =] 53
5 6 5-7T4+6-8 83
. . P . 2 5 I . bl ) 21‘-1+5Ig:bl
4 Equations in matrix form Ax = b [ 9 - ] [ - ] = [ by ] replaces 371 + T = by

{T’he solution to Ax = b can be written as # = A~ 1b. But some matrices don’t allow A1, /




Inner Product of the Euclidean n-space

R" was defined to be the set of all ordered n-tuples of real
numbers. When R" is combined with the standard operations of
vector addition, scalar multiplication, vector length, and the dot

product, the resulting vector space is called Euclidean n-space.

The dot product of two vectors 1s defined to be
u-:-v=uyv; + uv, + ..+ uyvp

The definitions of the vector length and the dot product are needed to
provide the metric concept for the vector space.

The length of a vector v= (v;,v,,...,v, ) in the Euclidean space R" is
given by

lvll=vu-v = yvZ+vZ+ .. +V2




Example
(a) In R, the length of V=(0,—2,1,4,-2) is given by

[V =407 +(=2)2 +1% +42 +(=2)> =/25 =5

(b) In R3the length of Vv = (\% , \/_% , \%) is given by

1) () )

(v is a unit vector)

Lemma (Unit vector in the direction of v) If v is a nonzero vector in

R"” then the vector v

= — (normalization)
[ vl

has length 1 and has the same direction as v. This vector u is called
the unit vector in the direction of v.



The angle between two vectors in R”:

6=—~Y _ o0<o<nr

[wlfff v

Opposite B Same
direction u-v<o u-v=0 wu-v>0 direction

<__,M1;»;L

Z<6?<7r 6?—— O<9<— =0
2 2 2

cos=1

cos =—1 cos< 0 cos=0 cos>0

= Note:

The angle between the zero vector and another vector 1s
not defined.



Axioms of inner product (more general than dot product)

Let u, v, and w be vectors in a vector space V, and let ¢ be any scalar.
An inner product on Vis a function that associates a real number
<u, v> with each pair of vectors u and v and satisfies the following
axioms.

(1) <u,v>=<v,w

2) <u,v+wy=<u,v)+<u,w)

3) c<u,vy=C{cu,v)

(4) <v,v>>0 and <v,v>=0 ifandonlyif v =0

Note:

u - v = dot product (Euclidean inner product for R")

<u, v >= general inner product for vector space V'



» Ex: (A different inner product for R”)
Show that the function defines an inner product on R,
where u=(y,,u,)and v=_(v,,v,) .
Cu,v)=uv, +2u,v,
Sol:

(a) (u,v)=uy, +2u,v, =vu, +2v,u, =(v,u)

b) w=(w ,w,)= L, v+w) =u (v +w) +2u, (v, +w,)
=u, v, +uw, +2u,v, + 2u,w,
=(uyv, +2u,v,)+uw, +2u,w,)
=<u,v>+<{u,w)

(¢) clu,v)=c(uyv, +2u,v,)=_(cu)v, +2(cu,)v, ={cu,v)
(d) (v,v)=v'+21,°>0
(v,v)=0=v"+2v,’=0 = vy, =v,=0 (v=0)



Norm (length) of u from the inner product:

Jull=(u,u) [ulf=(u,u)

Distance between u and v:

d(u,v)du—v|=/(u—v,u-v)

Angle between two nonzero vectors u and v:

g {u, vy

- V)
[ul]|v]]

0<0<rx

Orthogonal nonzero vectors : (u L v)

u and v are orthogonal if <u,v)=0 .



Theorem
Let u and v be vectors 1n an inner product space V.
(1) Cauchy-Schwarz inequality:
Cu, v a1V
(2) Triangle inequality:
[u+v][<|{luf|+]]v]
(3) Pythagorean theorem :

u and v are orthogonal 1f and only if

2 2 2
Ju+v]"=[u” +]v]



For a norm, and a distance, there are many possibilities!

Properties of norm:
u|>0 and ||ul|=0 if andonlyif u=20

(1)
(2)
(3)

cu| =|c|||u|| Forany scalar c and vector u

u+v|<|u| +||v| Forany vectors uandv

(1)

Examples.

—
— 3 N
L S

Properties of distance:
(1) d(u,v)>0,and d(u,v)=0ifandonlyif U=V

(2)
(3)

dlu,v)=d(v,u)
d(u,v) < d(u,w) +d(w,v)

[— _
- 1Il"llzlc=1 a3/
L
=2 iy lox

= maxy_q |ag
= maxj_q kfagl.



= Orthogonal projections in inner product spaces:

Let u and v be two vectors 1n an inner product space V,
such that v # 0. Then the orthogonal projection of u

onto v 1s given by

(u, V)
\% 9.V
(V, V) N

proju =

« Note:
If v 1s a 1n1t vector, then (v,v)=[v|]F=1

The formula for the orthogonal projection of u onto v
takes the following simpler form.

proju=<u,v)v



Example (Finding an orthogonal projection in R%) Use the
Euclidean inner product in R> to find the orthogonal projection
of u=(6, 2, 4) onto v=(1, 2, 0).

Sol:
(u, v)=(6)D+(2)2)+(4(0)=10
(v,V)=1"+2°4+0° =5
proju=——v=2(1,2,0)=(2,4,0)
V-V
Note:

u—proju=(6,2,4)-(2,4,0)=(4,-2,4)1s orthogonalto v = (1,2,0).



Orthonormal Bases
Orthogonal:

A set S of nonzero vectors in an inner product space V' 1s
called an orthogonal set 1f every pair of vectors in the set 1s

orthogonal. S={V, V...V, } CV,

<V v;> =0 1#]
Orthonormal:

An orthogonal set 1n which each vector 1s a unit vector 1s

called orthonormal. S = {Vl, V,, oV, } cV

1 i=]

(V;,V ;) ={ o

Note: 0 i#]

If S 1s a basis, then it 1s called an orthogonal basis or an

orthonormal basis.



Theorem: If S={u,,...,u,} in R" is an orthogonal set of nonzero
vectors, then S is linearly independent and hence is a basis for the
subspace spanned by S.

Definition: An orthogonal basis for a subspace W of R" is a basis for W
that is also an orthogonal set.

Theorem: Let {u,,...,u,} be an orthogonal basis for a subspace W of R".
For each y in W, the weights in the linear combination

y=c,u+...+c u,

<yu;>

are (uniquely) given by C =
: <u]',u]'>

Remark.
From a bases to an orthonormal Bases: the Gram-Schmidt Algorithm.



Example (A nonstandard orthonormal basis for R®). Show that the
following set is an orthonormal basis.

v

S = {(\15\15@ [—\65’\65’2\35} @_iij}

Solution,

Show that the three vectors are mutually orthogonal.

V-V, =—2++4+0=0

V, -V, = 22 +0=0
L7 32 32

V2 2 242
V, V;=—————+ =0

9 9 9



Show that each vector is of length 1: thus it is an orthonormal set
v, | =m:\/%+%+0:1

Vv, |:m: =+=+5=1
vill=Vs vy =g+ g =]

Example. (Representing vectors relative to an orthonormal basis) Find the
coordinates of w = (5, -5, 2) relative to the following orthonormal basis:

B={(5.5,0),(-5,5,0),(0,0,1);}

<W9V1>:W°V1 (5 _5 2) (59 5 90)__ _—1_
<W9V2>:W.V2 (5 -3 2) (_§95 90)__ :>[W]B =|—=7
(W, v)=w-v,=(5,-5,2)-(0,0,1)=2 | 2



Orthogonal Matrix

« A square matrix A with the property
Al=AT
Is said to be an orthogonal matrix.

Remark
— A square matrix A is orthogonal if and only if AA" =/ or A’A = I.

« Example1 - T 7

3 2 6 | é_égigé_ )
ER 77 707 7 7100
4| 63 2 ]2 3 663 20 1y

7 7 17 77 70 7 7 7

2 63 6 2 326 3000
7 7 7] 7 7 1l7 71 7

 Example 2
Rotation and reflection matrices is orthogonal.

e cosfd —sind
| sin® cos@



Theorem

The following are equivalent for an nxn matrix A.
— A is orthogonal.

— The row vectors of A form an orthonormal set in R” with the
Euclidean inner product.

— The column vectors of A form an orthonormal set in R" with the
Euclidean inner product.

Moreover:

- The inverse of an orthogonal matrix is orthogonal.

- A product of orthogonal matrices is orthogonal.



Theorem (Orthogonal Matrices as Linear Operators)

« If Ais an nxn matrix, then the following are equivalent.
— Ais orthogonal.
— || Ax || = || x || for all x in R".
— Ax-Ay=x-yforallxandyin R".

« Remark:

— If T: R"— R"is multiplication by an orthogonal matrix A, then T
Is called an orthogonal operator on R".

— It follows from the preceding theorem that the orthogonal
operator on R" are precisely those operators that leave the
length of all vectors unchanged.




Let A = [i {?:| If ad — be # 0, then A is invertible and

_ 1 d —b
A7l =
ﬂd—bc[—f H]

If ad — bc = 0, then A 15 not invertible.

The quantity ad-bc is called the determinant of A, and we write
det A=ad-bc

Example A—[j 4] — — 2
pie. — |5 6 — A — 5,."r1 _3};2

If A1s an invertible n x n matrix, then for each b in B", the equation Ax = b has
the unique solution x = A~ 'b.



