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A transformation (or function or mapping) T from Rn to  Rm is a rule that 

assigns to each vector x in Rn a vector T(x) in Rm

The set Rn is called the domain of T, and Rm is called the codomain of T. 

For x in Rn, the vector T(x)  in Rm is called the image of x (under the action of 

T). The set of all images T(x) is called the range of T.

Linear Transformations

Linear Transformations satisfy: 

T(au + bv) = aT(u) + bT(v) 

- u and v are vectors

- a and b are scalars
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Linear  mapping T from         to          can be expressed 

by using a m x n matrix  A.

Example. The linear transformation T from R3 to R2 is 

defined as, 

T

𝑢1
𝑢2
𝑢3

=
𝑢1 + 2 𝑢2
3𝑢2 + 4𝑢3

Can be written as 
𝑣1
𝑣2

=
1 2 0
0 3 4

𝑢1
𝑢2
𝑢3

For each x in Rn, T(x) is computed as Ax, where A is an m x n 
matrix. For simplicity, we sometimes denote such a matrix 
transformation by x  Ax. 

nR mR



Example. 

Solve T (x) = b for x, that is, solve Ax =b, means to find an x whose 

image under T is b.



Remark. The question of a uniqueness problem for a system of linear

equations, translated here into the language of matrix transformations: Is b 

the image of a unique x in Rn. Similarly, for the existence problem: does 

there exist an x whose image is b?

Usually want a “formula” for T(x), Every linear transformation from Rn to Rm

is actually a matrix transformation x  Ax and that important properties of T 

are intimately related to familiar properties of A. 

The key to finding A is to observe that T is completely determined by what it 

does to the columns of the n x n identity matrix In.

Identity matrix 𝐼𝑛 =
1 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 1

, for example 𝐼3 =
1 0 0
0 1 0
0 0 1



Example. 



Examples of transformations R2
 R2 with their associated matrices.
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Matrix Multiplication
When a matrix B multiplies a vector x, it transforms x into the vector Bx. If 

this vector is then multiplied in turn by a matrix A, the resulting vector is 

A(Bx)

Thus A(Bx) is produced from x by a composition of mappings. Our goal is 

to represent this composite mapping as multiplication by a single matrix, 

denoted by AB, so that  

A(Bx) =  (AB) x



Example. 



Example. 

2 −5 0
−1 3 −4
6 −8 −7
−3 0 9

4 −6
7 1
3 2

= 
−27 −17
5 1
15 36



Powers of a Matrix
If A is an nxn matrix and if k is a positive integer, then Ak denotes the 

product of k copies of A

The Transpose of a Matrix
Given an m x n matrix A, the transpose of A is the n x m matrix, denoted 

by AT, whose columns are formed from the corresponding rows of A.



THE INVERSE OF A MATRIX

An n x n matrix A is said to be invertible if there is an n x n matrix C such 

that

CA =I and AC = I

where I is the n x n identity matrix. In this case, C is an inverse of A. In fact, 

C is uniquely determined by A, because if B were another inverse of A, then 

B =C : this unique inverse is denoted by A-1

Example. 



Matrices
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Inner Product of the Euclidean n-space

Rn was defined to be the set of all ordered n-tuples of real

numbers. When Rn is combined with the standard operations of

vector addition, scalar multiplication, vector length, and the dot

product, the resulting vector space is called Euclidean n-space.

The dot product of two vectors is defined to be

𝐮 ∙ 𝐯 = u1v1 + u2v2 + …+ unvn

The definitions of the vector length and the dot product are needed to 

provide the metric concept for the vector space.

The length of a vector  v= (v1 , v2, … , vn ) in the Euclidean space Rn is 

given by

𝐯 = 𝐮 ∙ 𝐯 = v1
2 + v2

2 + …+ vn
2



Example
(a) In R5, the length of                                          is given by 

(b) In R3 the length of                                      is given by 
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(v is a unit vector)

Lemma (Unit vector in the direction of v) If v is a nonzero vector in 
Rn, then the vector   

(normalization)

has length 1 and has the same direction as v. This vector u is called 
the unit vector in the direction of v.

|||| v

v
u 



 Note:

The angle between the zero vector and another vector is 

not defined.

The angle between two vectors in Rn:
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Axioms of inner product (more general than dot product)

Let u, v, and w be vectors in a vector space V, and let c be any scalar. 

An inner product on V is a function that associates a real number 

<u, v> with each pair of vectors u and v and satisfies the following 

axioms.

Note:

V

Rn

 space for vectorproduct inner  general, 

 )for product inner Euclidean (productdot       
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 Ex: (A different inner product for Rn)

Show that the function defines an inner product on R2, 

where and                     .
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Norm (length) of u from the inner product: 

〉〈 uuu ,||||  〉〈 uuu ,|||| 2

Distance between u and v:

 vuvuvuvu ,||||),(d

  0,
||||||||

,
cos

vu

vu 〉〈

Angle between two nonzero vectors u and v:

Orthogonal nonzero vectors : )( vu 

u and v are orthogonal if                     .0, 〉〈 vu



Theorem

Let u and v be vectors in an inner product space V.

(1) Cauchy-Schwarz inequality:

(2) Triangle inequality:

(3) Pythagorean theorem :

u and v are orthogonal if and only if   

||u v|| ||u|| ||v||  

222 |||||||||||| vuvu 

| u , v | ||u|| ||v||〈 〉



Properties of norm:

(1)                    and                    if  and only if 

(2)                               For any scalar c and vector u

(3) For any vectors u and v

Properties of distance:

(1)                         , and                       if and only if 

(2) 

(3)     d(u,v)  d(u,w) +d(w,v) 

0|||| u 0|||| u 0u 

|||||||||| uu cc 

0),( vud 0),( vud vu 

),(),( uvvu dd 

|||||||||||| vuvu 

For a norm, and a distance, there are many possibilities!

Examples.



 Orthogonal projections in inner product spaces:

Let u and v be two vectors in an inner product space V, 

such that          . Then the orthogonal projection of u 

onto v is given by

0v 

v
vv

vu
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,

,
proj

 Note:

If v is a init vector, then                              .

The formula for the orthogonal projection of u onto v 

takes the following simpler form. 

1||||, 2 vvv 〉〈

vvuuv  ,proj

u

v



Example (Finding an orthogonal projection in R3) Use the 

Euclidean inner product in R3 to find the orthogonal projection 

of u=(6, 2, 4) onto v=(1, 2, 0).

Sol:
10)0)(4()2)(2()1)(6(,  vu
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Orthonormal Bases 

Orthogonal:

A set S of nonzero vectors in an inner product space V is 

called an orthogonal set if every pair of vectors in the set is 

orthogonal.

Orthonormal:

An orthogonal set  in which each vector is a unit vector is 

called orthonormal.  
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Note:

If S is a basis, then it is called an orthogonal basis or an

orthonormal basis.

S = v1, v2,… vn   V,    

< vi vj > =0  i  j



Theorem: If S={u1,…,um} in  Rn is an orthogonal set of nonzero 

vectors, then S is linearly independent and hence is a basis for the 

subspace spanned by S.

Definition: An orthogonal basis for a subspace W of Rn is a basis for W

that is also an orthogonal set.

Theorem: Let {u1,…,um} be an orthogonal basis for a subspace W of Rn. 

For each y in W, the weights in the linear combination

y = c1 u1+…+ cm um

are (uniquely) given by    cj = 
<𝐲,𝐮𝑗>

<𝐮𝑗,𝐮𝑗>
j=1,…,m    

Remark.

From a bases to an orthonormal Bases: the  Gram-Schmidt Algorithm. 



Example (A nonstandard orthonormal basis for R3). Show that the 
following set is an orthonormal basis.
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Solution, 

Show that the three vectors are mutually orthogonal.
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Show that each vector is of length 1: thus it is an orthonormal set
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Example. (Representing vectors relative to an orthonormal basis) Find the 

coordinates of  w = (5, -5, 2) relative to the following orthonormal basis:
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Orthogonal Matrix

• A square matrix A with the property 

A-1 = AT

is said to be an orthogonal matrix.

Remark 

– A square matrix A is orthogonal if and only if AAT = I or ATA = I.

• Example 1

• Example 2

Rotation and reflection matrices is orthogonal.
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Theorem

The following are equivalent for an nn matrix A.

– A is orthogonal.

– The row vectors of A form an orthonormal set in Rn with the 

Euclidean inner product.

– The column vectors of A form an orthonormal set in Rn with the 

Euclidean inner product.

Moreover:

- The inverse of an orthogonal matrix is orthogonal.

- A product of orthogonal matrices is orthogonal.



Theorem (Orthogonal Matrices as Linear Operators)

• If A is an nn matrix, then the following are equivalent.

– A is orthogonal.

– || Ax || = || x || for all x in Rn.

– Ax · Ay = x · y for all x and y in Rn.

• Remark:

– If T : Rn  Rn is multiplication by an orthogonal matrix A, then T
is called an orthogonal operator on Rn.

– It follows from the preceding theorem that the orthogonal 
operator on Rn are precisely those operators that leave the 
length of all vectors unchanged.



The quantity ad-bc is called the determinant of A, and we write

det A = ad-bc

Example.


