GTDM - 2019/20

Basis

Based on Linear Algebra and Its Applications, David C. Lay, Steven R. Lay, and Judi J. McDonald, PEARSON 5th ed.

Basis and Dimension

S is called a basis for V

Notes:

A basis *S* must have enough vectors to span *V*, but not so many vectors that one of them could be written as a linear combination of the other vectors in *S*

Example. The **standard basis** for R^n (here vectors as rows):

{
$$\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n$$
} $\mathbf{e}_1 = (1, 0, ..., 0), \mathbf{e}_2 = (0, 1, ..., 0), ..., \mathbf{e}_n = (0, 0, ..., 1)$

Ex: For R^4 , {(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)}

Example. Show that $S = \{\mathbf{v}_1, \mathbf{v}_2\} = \{(1, 1), (1, -1)\}$ is a basis for R^2 (1) For any $\mathbf{u} = (u_1, u_2) \in R^2$, $c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{u} \implies \begin{cases} c_1 + c_2 = u_1 \\ c_1 - c_2 = u_2 \end{cases}$

The system has a unique solution for each **u**. Thus you can conclude that *S* spans R^2

(2) For
$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0} \implies \begin{cases} c_1 + c_2 = 0 \\ c_1 - c_2 = 0 \end{cases}$$

The system has only the trivial solution. Thus you can conclude that *S* is linearly independent.

Theorem [Uniqueness of basis representation for any vectors]

If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a basis for a vector space *V*, then every vector in *V* can be written in one and only one way as a linear combination of vectors in *S*

Theorem [Bases and linear dependence]

If $S = [\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n]$ is a basis for a vector space *V*, then every set containing more than *n* vectors in *V* is linearly dependent (In other words, every linearly independent set contains at most *n* vectors)

Theorem [Number of vectors in a basis]

If a vector space *V* has one basis with *n* vectors, then every basis for *V* has *n* vectors

• Dimension:

The dimension of a vector space V is defined to be the number of vectors in a basis for V

<i>V</i> : a vector space	S: a basis for V
dim(<i>V</i>) = #(<i>S</i>)	(the number of vectors in a basis <i>S</i>)

Remark. We consider here only Finite dimensional:

A vector space V is finite dimensional if it has a basis consisting of a finite number of elements

Example. Finding the dimension of a subspace of R^3 (a) $W = \{(d, c-d, c): c \text{ and } d \text{ are real numbers}\}$ (b) $W = \{(2b, b, 0): b \text{ is a real number}\}$

Sol: (Hint: find a set of L.I. vectors that spans the subspace, i.e., find a basis for the subspace.)

(a)
$$(d, c-d, c) = c(0, 1, 1) + d(1, -1, 0)$$

 $S = \{(0, 1, 1), (1, -1, 0)\}$ (S is L.I. and S spans W)

S is a basis for *W*

 $\dim(W) = \#(S) = 2$

(b) Q(2b, b, 0) = b(2, 1, 0) $S = \{(2, 1, 0)\}$ spans *W* and *S* is L.I. *S* is a basis for *W* $\dim(W) = \#(S) = 1$

GTDM - 2019/20

LINEAR TRANSFORMATIONS

Based on Linear Algebra and Its Applications, David C. Lay, Steven R. Lay, and Judi J. McDonald, PEARSON 5th ed.

A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector x in \mathbb{R}^n a vector T(x) in \mathbb{R}^m

The set \mathbb{R}^n is called the **domain** of T, and \mathbb{R}^m is called the **codomain** of T. For **x** in \mathbb{R}^n , the vector $T(\mathbf{x})$ in \mathbb{R}^m is called the **image** of **x** (under the action of T). The set of all images $T(\mathbf{x})$ is called the **range** of T.

Linear Transformations

Linear Transformations satisfy:

$$T(a\mathbf{u} + b\mathbf{v}) = aT(\mathbf{u}) + bT(\mathbf{v})$$

- u and v are vectors
- a and b are scalars

Linear mapping T from R^n to R^m can be expressed by using a *m* x *n* matrix A.

Example. The linear transformation T from R³ to R² is defined as,

$$\mathsf{T}\begin{pmatrix}u_1\\u_2\\u_3\end{pmatrix} = \begin{pmatrix}u_1 + 2 \ u_2\\3u_2 + 4u_3\end{pmatrix}$$

Can be written as
$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 4 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$$

For each **x** in Rⁿ, T(**x**) is computed as A**x**, where A is an m x n matrix. For simplicity, we sometimes denote such a *matrix transformation* by $\mathbf{x} \rightarrow A\mathbf{x}$.

111 \

Example.

Let
$$A = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}$, $\mathbf{c} = \begin{bmatrix} 3 \\ 2 \\ 5 \end{bmatrix}$, and

define a transformation $T : \mathbb{R}^2 \to \mathbb{R}^3$ by $T(\mathbf{x}) = A\mathbf{x}$, so that

$$T(\mathbf{x}) = A\mathbf{x} = \begin{bmatrix} 1 & -3 \\ 3 & 5 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 5x_2 \\ -x_1 + 7x_2 \end{bmatrix}$$

$$T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 1 & -3\\ 3 & 5\\ -1 & 7 \end{bmatrix} \begin{bmatrix} 2\\ -1 \end{bmatrix} = \begin{bmatrix} 5\\ 1\\ -9 \end{bmatrix}$$

Solve T (\mathbf{x}) = **b** for \mathbf{x} , that is, solve A \mathbf{x} =**b**, means to find an \mathbf{x} whose image under T is **b**.

Remark. The question of a *uniqueness* problem for a system of linear equations, translated here into the language of matrix transformations: Is **b** the image of a *unique* **x** in \mathbb{R}^n . Similarly, for the *existence* problem: does there *exist* an **x** whose image is **b**?

Identity matrix
$$I_n = \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}$$
, for example $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Usually want a "formula" for $T(\mathbf{x})$, Every linear transformation from \mathbb{R}^n to \mathbb{R}^m is actually a matrix transformation $\mathbf{x} \to A\mathbf{x}$ and that important properties of T are intimately related to familiar properties of A.

The key to finding A is to observe that T is completely determined by what it does to the columns of the n x n identity matrix I_n .

Example. The columns of
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

Suppose T is a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 such that

$$T(\mathbf{e}_1) = \begin{bmatrix} 5\\-7\\2 \end{bmatrix} \text{ and } T(\mathbf{e}_2) = \begin{bmatrix} -3\\8\\0 \end{bmatrix}$$

With no additional information, find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2 .

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2$$

Since T is a *linear* transformation,

$$T(\mathbf{x}) = x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2)$$

= $x_1 \begin{bmatrix} 5\\-7\\2 \end{bmatrix} + x_2 \begin{bmatrix} -3\\8\\0 \end{bmatrix} = \begin{bmatrix} 5x_1 - 3x_2\\-7x_1 + 8x_2\\2x_1 + 0 \end{bmatrix}$

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of *at least one* **x** in \mathbb{R}^n .

A mapping $T : \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of *at most one* **x** in \mathbb{R}^n .

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then *T* is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation, and let A be the standard matrix for T. Then:

- a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- b. T is one-to-one if and only if the columns of A are linearly independent.

Matrix Multiplication

When a matrix B multiplies a vector \mathbf{x} , it transforms \mathbf{x} into the vector B \mathbf{x} . If this vector is then multiplied in turn by a matrix A, the resulting vector is A(B \mathbf{x})

Thus $A(B\mathbf{x})$ is produced from \mathbf{x} by a *composition* of mappings. Our goal is to represent this composite mapping as multiplication by a single matrix, denoted by *AB*, so that

$$A(B\mathbf{x}) = (AB) \mathbf{x}$$

Example. Compute *AB*, where $A = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix}$ and $B = \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix}$.

Write $B = [\mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{b}_3]$, and compute:

$$A\mathbf{b}_{1} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}, \quad A\mathbf{b}_{2} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 3 \\ -2 \end{bmatrix}, \quad A\mathbf{b}_{3} = \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 6 \\ 3 \end{bmatrix}$$
$$= \begin{bmatrix} 11 \\ -1 \end{bmatrix} \qquad = \begin{bmatrix} 0 \\ 13 \end{bmatrix} \qquad = \begin{bmatrix} 21 \\ -9 \end{bmatrix}$$
Then
$$AB = A[\mathbf{b}_{1} \ \mathbf{b}_{2} \ \mathbf{b}_{3}] = \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & 0 & 21 \\ -1 & 13 & -9 \end{bmatrix}$$

ROW-COLUMN RULE FOR COMPUTING AB

If the product *AB* is defined, then the entry in row *i* and column *j* of *AB* is the sum of the products of corresponding entries from row *i* of *A* and column *j* of *B*. If $(AB)_{ij}$ denotes the (i, j)-entry in *AB*, and if *A* is an $m \times n$ matrix, then

$$(AB)_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

Example.

$$A = \begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix} \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -27 & -17 \\ 5 & 1 \\ 15 & 36 \end{bmatrix}$$

Powers of a Matrix

If A is an nxn matrix and if k is a positive integer, then A^k denotes the product of k copies of A

$$A^k = \underbrace{A \cdots A}_k$$

The Transpose of a Matrix

Given an m x n matrix A, the **transpose** of A is the n x m matrix, denoted by A^{T} , whose columns are formed from the corresponding rows of A.

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \quad B = \begin{bmatrix} -5 & 2 \\ 1 & -3 \\ 0 & 4 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ -3 & 5 & -2 & 7 \end{bmatrix}$$
$$A^{T} = \begin{bmatrix} a & c \\ b & d \end{bmatrix}, \quad B^{T} = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix}, \quad C^{T} = \begin{bmatrix} 1 & -3 \\ 1 & 5 \\ 1 & -2 \\ 1 & 7 \end{bmatrix}$$

THE INVERSE OF A MATRIX

An n x n matrix A is said to be **invertible** if there is an n x n matrix C such that

CA =I and AC = I

where I is the n x n identity matrix. In this case, C is an **inverse** of A. In fact, C is uniquely determined by A, because if B were another inverse of A, then B = C: this unique inverse is denoted by A^{-1}

 $A^{-1}A = I \quad \text{and} \quad AA^{-1} = I$

Example.

If
$$A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$$
 and $C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$, then
 $AC = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and
 $CA = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Thus $C = A^{-1}$.

Let
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
. If $ad - bc \neq 0$, then A is invertible and
$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

The quantity ad-bc is called the **determinant** of A, and we write det A = ad-bc

Example.
$$A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}$$
. $A^{-1} = \begin{bmatrix} -3 & 2 \\ 5/2 & -3/2 \end{bmatrix}$

If *A* is an invertible $n \times n$ matrix, then for each **b** in \mathbb{R}^n , the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.