True/False Questions

1. The image of a 3x4 matrix is a subspace of R⁴?

False. It is a subspace of R³.

2. The span of vectors $V_1, V_2, ..., V_n$ consists of all linear combinations of vectors $V_1, V_2, ..., V_n$.

True. That is the definition of the span.

If V₁, V₂, ..., V_n are linearly independent vectors in Rⁿ, then they must form a basis of Rⁿ.

True: n linearly independent vectors in a space of dimension n form a basis.

4. There is a 5x4 matrix whose image consists of all of R⁵.

False. It takes at least 5 vectors to span all of R⁵.

5. The kernel of any invertible matrix consists of the zero vector only.

True. AX = 0 implies X = 0 when A is invertible.

Kernel of A = { **x** such that A**x**=**0** }

If 2 U + 3 V + 4 W = 5U + 6 V + 7 W, then vectors U, V, W must be linearly dependent.

True. In fact 3U+3V+3W = 0.

7. The column vectors of a 5x4 matrix must be linearly dependent.

False.1000010010001001000000

is an example where they are linearly independent.

If V₁, V₂, ..., V_n and W₁, W₂, ..., W_m are any two bases of a subspace V of R¹⁰, then n must equal m.

True. Any two bases of the same vector space have the same number of vectors.

9. If the kernel of a matrix A consists of the zero vector only, then the column vectors of A must be linearly independent.

True. Since the kernel is zero, the columns of A must be linearly independent.

10. If the image of an nxn matrix A is all of Rⁿ, then A must be invertible.

True. Since the columns span Rⁿ, the matrix must have a right inverse. Since it is square, it must be invertible. 11. If vectors $V_1, V_2, ..., V_n$ span R⁴ then n must be equal to 4.

False. It could be 4 or larger than 4.

12. If vectors U, V, and W are in a subspace V of Rⁿ, then 2 U – 3 V + 4 W must be in V as well.

True. A subspace is closed under addition and scalar multiplication.

 If a subspace V of Rⁿ contains none of the standard vectors E₁, E₂, ..., E_n, then V consists of the zero vector only.

counter example.

14. If vectors V₁, V₂, V₃, V₄ are linearly independent, then vectors V₁, V₂, V₃ must be linearly independent as well.

True. Any dependence relation among V_1 , V_2 , V_3 can be made into a dependence relation for V_1 , V_2 , V_3 , V_4 by adding a zero coefficient to V_4 .

15. The vectors of the form b 0 a

(where a and b are arbitrary real numbers) form a subspace of R⁴.

True. This is closed under addition and scalar multiplication.

1 2 3 16. Vectors 0 1 2 form a basis of R³. 0 0 1 1 1

123a+2b+3cTrue.A0+b1+c2=b+2c001cc

For the dependence relation to equal zero, we must have c = 0, then b=0, then a=0. Thus the three vectors are linearly independent and must be a basis of \mathbb{R}^3 . 17. If two nonzero vectors are linearly dependent, then each of them is a scalar multiple of the other.

True. The dependence relation aV+bW = 0

has to have both a and b nonzero. Then

V = -b/a W and W = -a/b V.

18. If V₁, V₂, V₃ are any three vectors in R³, then there must be a linear transformation T from R³ to R³ such that $T(V_1) = E_1$, $T(V_2) = E_2$, and $T(V_3)$ = E₃.

False. You can do this when they are independent. You cannot do it when they are dependent.

19. If A is an invertible nxn matrix, then the kernels of A and A⁻¹ must be equal.

True. In fact the kernels of A and A⁻¹ are both just 0.

20. For every subspace V of R³ there is a 3x3 matrix A such that V = im(A).

True. Just pick 3 vectors which span *V*. Use these as the columns of the matrix.