
Lecture 11 - 20-04-2020

1.1 Analysis of KNN

E
[
`D(ˆ̀s)

]
≤ 2 · `D (f ∗) + c · E

[
‖X = xΠ(s,x)‖

]
At which rate this thing goes down? If number of dimension goes up then a
lot of point are far away from X.
So this quantity must depend on the space in which X live.
Some dependence on number of depends and incresaing number of traning
points close to X
This expecation is fucniton of random variable X and Xπ(s,x)

We are going to use the assumption that:
|Xt| ≤ 1 ∀ cordinates i = 1, ..., d

Figure 1.1: Example of domain of KNN

Hyper box in bydimension. All point live in this box and we exploit that.
Look at the little suare in which is divided and we assume that we are di-
viding the box in small boxes of size ε. Now the training points will be a
strincle of point distributed in the big square.
Our training points are distribuited in the box (this is our S).
Now we added a point x and given this two things can happned: falls in the
square with training points or in a square without training points.
What is going to be the distance Xπ(s,x) in this two cases?
We have c1 up to cr How big is this when we have this two cases? (We
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lookjing at speci�c choices of x and s)

‖X −Xs,x‖ ≤

{
ε
√
d Ci ∪ S 6= 0√

d Ci ∪ S = 0

were X ∈ Ci
We have to multiply by the lenght of the cube. Will be ε

√
d

Figure 1.2: Diagonal length

If things go badly can be very far away like the length of the domain. Lenght
is 2 and diagonal is

√
d

if close they are going to be εclose or far as domain.
We can split that the expression inside the expectation according to the two
cases.

E
[
‖X −XΠ(s,x)‖

]
≤

E

[
ε ·
√
d ·

r∑
i=1

I{X ∈ Ci} · I{Ci ∩ S 6= 0}

]
+ 2 ·
√
d ·

r∑
i=1

I{X ∈ Ci}·I{Ci∩S 6= 0} =

= ε·
√
d· E

[
r∑
t=1

I{X ∈ Ci}I · {Ci ∩ S 6= 0}

]
+2·
√
d ·

r∑
i=1

E [ I{X ∈ C1} · I{C1 ∩ S 6= 0} ] ≤

I don't care about this one
∑r

t=1 I{X ∈ Ci} · I{Ci ∩ S 6= 0}
Can be either 0 or 1 (if for some i, X belong to some Ci
So at most 1 the expectation

≤ ε ·
√
d+�

We can bound this square. Are the event I in the summation of the term
after +. If they are indepednt the product will be the product of the two
expectation. If I �x the cube. X and S are independent.
Now the two events are independent
X ∈ Ci is independent of Ci ∩ S 6=

E [ I{X ∈ Ci} · I{Ci ∩ S 6= 0}] = E [I{X ∈ Ci}] · E [I{Ci}]
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MANCAAAAAAA 9.26

P (Ci ∩ S) = (1− P (X ∈ C1))
m ≤ exp(−m · P(x ∈ C1))

The probability of the point fall there and will be the probability of falling
in the cube.
Probability of Xs to fall in the cube with a m (samples?)
Now use inequality (1− p)m ∈ e−pm −→ 1 + x ≤ ex

Figure 1.3: Shape of the function

r∑
t=1

E [P (X ∈ C1) · P (C1 ∩ S 6=) ] ≤
r∑
i=1

pi · e−mpi ≤

given that pi = P(X ∈ Ci) I can upper bound this

≤
r∑
t=1

(
max
0≤p≤1

p e−mp

)
≤ r max

0≤p≤1
p e−mp =

where p e−mp is F (p) it is concave function so i'm going to take �rst order
derivative to maximise it.

F ′(p) = 0⇔ p =
1

m
check!

F ′′(p) ≤ 0

Check this two condition!
=

r

em

Now get expectation

E
[
‖X −XΠ(s,x)‖

]
≤ ε ·

√
d+

(
2 ·
√
d
) r

em
=

I have (2
ε
)2 squares. This bring ε in the game

ε ·
√
d+

(
2 ·
√
d
) 1

em
·
(
2

ε

)d
=
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=
√
d

(
ε+

2

em
·
(
2

ε

)d)
HE MISS THE "c" costant from the start we can choose ε to take
them balanced
set ε = 2m

−1
(d+1) (

ε+
2

em

)
·
(
2

ε

d
)
≤ 4m

−1
(d+1) =

E
[
`d(ĥs)

]
≤ 2`d(f

∗) + 4 · c ·
√
d ·m−

1
d+1

We have that:
if m −→ ∞ `D(f

∗) ≤ E
[
`D(ĥs

]
) ≤ 2`D(f

∗)

I want this smaller than twice risk + some small quantity

E
[
`d(ĥS)

]
≤ 2`D(f

∗) + ε

How big m ?
Ignore this part since very small (4 · c ·

√
d)

m−
1

d+1 ≤ ε⇔ m ≥
(
1

ε

)d
+ 1

So 1-NN require a training set size exponential "accuracy" 1− ε

We show that 1−NN can approach twice based risk 2 · `D(f ∗)
but it takes a training set exponential in d.

1.1.1 Study of KNN

Maybe we can use the KNN .

E
[
`D(ĥs)

]
≤

(
1 +

√
8

k

)
`D(f

∗) + 0
(
km−

1
d+1

)
So is not exponential here.
Learning algorithm A is consistent for a certain loss `
If ∀D(distribution) of data we have that A(Sm) predictor output by A
Now have the risk of that in `D(A(Sm)) and we look at the expectation
E [`D(A(Sm))]
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If we give a training set size large ( limm→∞ E [`D(A(Sm))] = `D(f
∗) ) risk

will converge in based risk.

KNN where K = Km (is a function of training set size). K, →∞ as m→∞.
Only way K goes to in�nity is sublinearly of training set size. (in�nity but
so as quicly as m Km = O(m)

For instance Km =
√
m

Then:

lim
m→∞

E [`D (A′ (Sm))] = `D(f
∗) where A′ is Km-NN

Increasing the size we will converge to this base risk for any distribution and
that's nice.

1.1.2 study of trees

Algorithm that grow tree classi�ers can also be made consistent provided two
condition:

� The tree keeps growing

� A non-vanishing fraction of traning example is routed to each leaft

Tree has to keep growing but not so fast.
Second point is: suppose you have a certain number of leaves and you can
look at the fraction. Each leaf ` gets N` examples. You want that this frac-
tion at any point of time is not going to 0. The fraction of point every leaf
receive a split we are reducing the smallest number of examples.
Example keep growing and leaves too and we want that N`

manca
this not going

to 0. . since not showed the formula.

Given A, how do I know wheter A could be consistent?

HA ≡ { h : ∃S A(S) = h}

S can be any size. If A is ERM then HA = H, so where ERM minimise it.
If ∃f ∗ : X −→ such that f ∗ 6∈ HA and ∃D such that f ∗ is Bayes optimal for
some distribution D.
This cannot be consistent because distribution will not be able to generate
the Bayes optimal predictor. Maybe is there another predictor f which is
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not equal to f ∗ risk.

What's the intuition?
Every time A is such that HA is "restricted" in some sense, then A cannot
be consistent. (e.g ERM).

Another way of restricting? Could be tree classi�ers with at most N nodes
(bound number of nodes).
How do i know N is enought to approximate well f ∗. I want to converge the
risk of f ∗.
We can introduce a class of algorithm potentially consistent in which space
predictor is not restricted.

1.2 Non-parametric Algorithms

When they are potentially consistent.
What does it mean?
Non-parametric algorithm have the potential of being consistent and do we
know if algorithm is parametric or not?
A is non-parametric if:

� the description of A(Sm) grows with m

Your predictor is a function and let's assume i can store in any variable a
real number with arbitrary precition.

Any algorithm with bias is incosistent. So ability to converge to

base risk is this.

How do i know if i have bias or not? this is where non parametric algorithm
came.
Let's consider KNN , how i can describe it? I have to remember distance is
maded by training points and if i give you more S the m will increase. So
this is parametric.
More training set for tree, then will grow more, even more larger will be ever
growing more.
Any algorithm as a give training points is no parametric, while growing with
parametric will stop a some point.
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Figure 1.4: Parametric and non parametric growing as training set getting
larger

If algorithm is more parametric as i give training points
If a certain point stop growing, f ∗ will be out and i will grow more.
If algorithm is able to generate � MANCA � Then the algorithm is non-
parametric and can be potentially consistent and incluse f ∗ as it grows.
If set of predictor stops because I'm not enlarging my set of predictor since
description of algortim will not depend on training size at some point →
to be consistent.
If bias vanashes as i increase the S, then i can be consistent. I generating
predictor that description depends on how much points i give them.

Parametric is not precise as consistency.
One class of algorithm that has consistency has a predicotr size growing with
S growing.
De�nition of non parametric is more fuzzy, consistency is precise (we demon-
strate that mathematically).

1.2.1 Example of parametric algorithms

Neural network is parametric since i give structure of the network. If i give
S small or big S my structure will be the same (will �t better on the training
points).
Other example are algorithm with linear classi�er in which number of pa-
rameter are just the idmension of the space.

E
[
`(ˆ̀) + 2

]
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