
Lecture 12 - 21-04-2020

1.1 Non parametrics algorithms

We talk about consistency: as the training size grows unbounded the ex-
pected risk of algorithms converge to Bayes Risk.

Now we talk about non parametric algorithm: the structure of the model
is determined by the data.
Structure of the model is �xed, like the structure of a Neural Network but
in non parametric algorithm will change structure of the model as the data
grows (KNN and tree predictor).
If I live the tree grow unboundenly then we get a non parametric tree, but if
we bound the grows then we get a parametric one.

The converve rate of Bayes Risk (in this case doubled) was small. Converge

of 1-NN to 2 `D(f ∗) is m−
1

d+1 so we need an esponential in the dimension.
And we need this is under Lips assumption of η.
It's possible to converge to Bayes Risk and it's called No free lunch.

1.1.1 Theorem: No free lunch

Let a sequenece of number a1, a2 ... ∈ R such that they converge to 0.
Also 1

22222222
≥ a1 ≥ a2 ≥ ... ∀A for binary classi�cation ∃D s. t.

`D(f ∗) = 0 (zero-one loss) so Bayes risk is zero and E [ `D (A(SM)) ] ≥
am ∀m ≥ 1
Any Bayes Optimal you should be prepared to do so on long period of time.
This means that:

� For speci�c data distribution D, then A may converge fast to Bayes
Risk.

� If η is Lipschitz then it is continous. This mean that we perturb the
input by the output doesno't change too much.

� If Bayes Risk is 0 (`D(f ∗) = 0) function will be discontinous

This result typically people think twice for using consistent algorithm be-
cause

I have Bayes risk and some non conssitent algorithm that will converge to
some value (`D(ĥ∗)). Maybe i have Bayes risk and the convergence takes a
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Figure 1.1: Tree building

lot on increasing data points. Before converging was better non parametric
(?..)

Picture for binary classi�cation, (similar for other losses)

� Under no assumption on η, the typicall "parametric" converge rate to
risk of best model in H (including ERM) is m−

1
2 . (Bias error may be

high)

� Under no assumption on η there is no guaranteed convergence to Bayes
Risk (in general) and this is no-free-lunch that guaranteed me no
convergence rate.

� Under Lipshtiz assunption on η the typical non parametric convergence

to Bayes Risk ism−
1

d+1 . This is exponentially worst than the parametric
convergency rate.

The exponential depencendece on d is called Curse of dimnsionality.
But if I assume small number of dimension −→ KNN is ok if d is small (and
η is "easy")
If you have a non parametric algorithm (no Bayes error but may have expo-
nentially in�nity training error). I want them to be balanced and avoid bias
and variance. We need to introduce a bit of bias in controlled way.
Inserting bias to reducing variance error. So we sacrify a bit to get a better
variance error.

It could be good to inject bias in order to reduce the variance error. In
practise instead of having 0 training error i want to have a larger training
error and hope to reduce over�tting sacri�ng a bit in the training error.
I can increase bias in di�erent technics: one is the unsamble methods.
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1.2 Highly Parametric Learning Algorithm

1.2.1 Linear Predictors

Our domain is Euclidean space (so we have points of numbers).

X is Rd x = (x1, .., xd)

A linear predictor will be a linear function of the data points.

h : Rd −→ Y h (x) = f(wT x) w ∈ Rd

f : R −→ Y

And this is the dot product that is

wT x =
d∑

t=1

wixi = ‖w‖ ‖x‖ cos Θ

Figure 1.2: Dot product

Suppose we look a regression with square loss.

Y = R h(x) = wT x w ∈ Rd

f ∗(x) =E [Y |X = x ]
Binary classi�cation with zero-one loss Y = {−1, 1}We cannot use this since
is not a real number but i can do:

h(x) = sgn
(
wT x

)
sgn(x) =

{
+1 if z > 0

−1 if z ≤ 0

where sgn is a sign function. Linear classi�er.
‖X‖ cos Θ is the length of the projection of x onto w
Now let's look at this set:

{x ∈ Rd : wTx = c}
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Figure 1.3: Dot product

This is a hyperplane.

‖w‖‖x‖ cos Θ = c ‖x‖ cos Θ =
c

‖w‖

Figure 1.4: Hyperplane

So (w, c) describe an hyperplane.
We can do binary classi�cation using the hyperplane. Any points that lives
in the positive half space and the negative. So the hyperplane is splitting in
halfs. H ≡ {x ∈ Rd : wTx = c}

H+ ≡ {x ∈ Rd : wTx > c} positive hs

H− ≡ {x ∈ Rd : wTx ≤} negative hs

h(x) =

{
+1 if x ∈ H+

−1 if x 6∈ H−
h(x) = sgn(wT − c)
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Figure 1.5: Hyperplane

h1 is non-homogenous linear classi�er.
h2 is homogenous linear classi�er. Any homogenous classi�er is equivalent to

Figure 1.6: Hyperplane

this:

{x ∈ Rd : X = c} is equivalent to {x : Rd+1 : νTx = 0}

ν = (w1, .., wd,−c) x′ = (x1, ..., xd, 1)

So we added a dimension.

wTx = c ⇔ νTx′ = 0∑
i

w1x1 = c ⇔
∑
i

w1x1 − c = 0

Rule:
When you learn predictor just add an extra feature to your data

points, set it ot 1 and forget about non- homogenous stu�.
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One dimensional example

Figure 1.7: Example of one dimensional hyperplane

I have negative (left of (x, 1) and positive point (left of (z, 1) classi�ed

Now i want to learn linear classi�er. How can i do it?

Hd = { h : ∃w ∈ Rd h(x) = sgn(wTx) }

Parametric!
We expect high bias a low variance.

ERM ĥS = arg min
h∈Hd

1

m
·

m∑
t=1

I{h(xt) 6= yt} =

= arg min
w∈Rd

1

m
·

m∑
t=1

I { ytwTxt ≤ 0 }

A bad optimisation problem!

FACT:
It is unlikely to �nd an algorithm that solves ERM for Hd and zero-one loss
e�ciently.
NP completeness problems!

It's very unlikely to solve this problem.
This problem is called MinDisagreement
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1.2.2 MinDisagreement

Instance: (x1, y1)...(xm, ym) ∈ {0, 1}d x {−1, 1}, k ∈ N
Question: Is there w ∈ xDd

s.t ytw
Txt ≤ 0 for at most k indices t ∈ {1, ...m}

This is NP-complete!
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