
Lecture 13 - 27-04-2020

1.1 Linear prediction

We had ERM ĥ

S = {(x1, y1)...(xn, yn)} xt ∈ Rd yt ∈ {−1,+1} `t(w) = I{ytwTxt ≤ 0}

ĥS = arg min
h∈HD

1

m

m∑
t=1

I{ytwTxt} ≤ 0

The associated decisio problem is a NP problem so cannot be camputed ef-
�cientiy unless P ≡ NP
Maybe we can approximate it, so a good solution that goes close to minimise
error.
This is called MinDisOpt

1.1.1 MinDisOpt

Instance: (x1, y1)...(xn, yn) ∈ {0, 1}dx{0, 1}
Solutio:

w ∈ QDminimising the number of indicest = 1, ...m s.t. htw
Txt ≤ 0

Opt(S) is the smallest number of mislcassi�ed example in S by any linear
classi�er in HD

where Opt(S)
m

is training error of ERM

Theorem : if P 6≡ NP , then ∀c > 0 there are no polytime algorithms
(with r. t. the input size Θ(md)) that approximately solve every istance S
of MinDisOpt with a number of mistakes bounded by C ·Opt(S).
If I am able to approximate it correclty this approximation will grow with
the size of the dataset.

∀A (polytime) and ∀C ∃S ˆ̀
S (A (S)) ≥ c·ˆ̀S

(
ĥS

)
(where ĥS is ERM)

Opt(S) = ˆ̀
S(ĥS)

This is not related with free lunch theorem (information we need to get base
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error for some learning problem). Free lunch: we need arbitrarirally informa-
tion to get such error. Here is we need a lot of computation to approximate
the ERM .

Assume Opt(S) = 0 ERM has zero training error on S
∃U ∈ Rd s.t. ∀t = 1, ...m ytU

Txt > 0 S is linearly separable

Figure 1.1: Tree building

We can look at the min

min
t=1,...m

ytU
Txt = γ(U) > 0 We called this marginn of U on (xt, yt)

We called in this way since γ(U)
‖U‖ = min tyt‖xt‖cos(Θ)

Figure 1.2: Tree building

where Θ is the angle
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Figure 1.3: Tree building

whereγ(U)
‖U‖ is the distance separating hyperplane on closest training example .

S linearly separable and if i look at the sistem of this linear inequality:{
ytwTxt > 0

ymwTxm > 0

We can solve it in polytime using a linear solver. So any package of linear
programming, and will be solved in linear time.

This is called feasibilty problem. We want a point y that satisfy all my
linear inequalities.

Figure 1.4: Feasibilty problem

When Opt(S) = 0 is we can implememtn ERM e�ciently using LP
(Linear programming).
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They may over�tting since a lot of bias. When this condition of Opt is no
satisfy we cannot do it e�ciently. LP algorithm can be complicated so we
�gure out another family of algorithm.

1.2 The Perception Algorithm

This came from late '50s and was designed for psicology but have a general
utility in othe �elds.

Perception Algorithm
Input : training set S = {(xt, yt)...(xm, ym)} xt ∈ Rd yt ∈ {−1,+1}
Init: w = (0, ...0)
Repcat
read next (xt, yt)
If ytw

Txt ≤ then w ←− w + ytxt
Until margin greater than 0 γ(w) > 0 // w separates S
Output w

We know that γ(w) = mint ytw
Txt ≤ 0 The question is, will it terminate

if S is linearly separable?
If ytw

Txt ≤ 0, then w ←− w + ytxt

Figure 1.5:

For simplicity our x are in this circle. Some are on the circonference on top
left with + sign and some in bottom right with − sign.
All minus �ipped to the other side and the we can deal the +.
U is a separating hyperplane, how can i �nd it?
Maybe i can do something like the average:

U =
1

m

m∑
t=1

ytxt ?

But actually don't take the average of all of them. So do not take average of
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all, instead take the one that satisfy ytw
Txt ≤ 0 condition.

ytw
Txt ≤ 0 is a violated consstraint and we want it > 0.

Does w ←− w + ytxt �x it?

yt(w + yt · xt)Txt = ytw
Txt + ‖xt‖2

We are trying to see what happen before and after the updates of w.
SInce ‖xt‖ > 0 so is positive, the update increase margins, thus going to-
wards �xing violated constraints.

1.2.1 Perception convergence Theorem

dated early 60s On a linearly separable S, perceptron will converge after at
most M updates (when they touch in the �gure) where:

M ≤
(

min
U : γ(U)= 1

‖U‖2
)(

max
t=1,..m

‖xt‖2
)

Algorithm is not able to do that. ALgorithm keeps looking till he get a vio-
lating constraint and then stops. This is bounded by the number of loops.

We said that γ(U) = mint ytU
Txt > 0 when U is separator.

∀t ytU
Txt ≥ γ(U) ⇔ ∀t yt

(
U

γ(U)

)T
xt ≥ 1

Figure 1.6:

If i rescale U i can make the margin bigger (in particolar > 1)
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The shortest min‖U‖ s.t. ytU
Txt ≥ 1 ∀t

Proof :
Wm is local variable after M updates, I have zero vector W0 = (0, ...0)
tM is the index of training example that causes the M -th update.

We want to upper bound M (deriving upper and lower bound
on a certain quantity ‖W‖ ‖U‖)
where U is any s.t. ytU

Txt ≥ 1 ∀t

‖WM‖2 = ‖WM−1 +ytMxtM‖2 = ‖WM−1‖2 +‖ytMxtM‖2 +2 ·ytMW T
M−1xtM =

= ‖WM−1‖2 + ‖xtM‖2 + 2 · ytMW T
M−1xtM ≤

where ytMW
T
M−1xtM ≤ 0

≤ ‖wM−1‖2 + ‖xtM‖2

‖WM‖2 ≤ ‖W0‖2 +
M∑
i=1

‖xt‖2 ≤M
(

max
t
‖xt‖2

)
........

.....

... MANCA ?????

‖WM‖ ‖U‖ ≤ ‖U‖
√
M
(

max
t
‖xt‖

)
since cos Θ ∈ [−1, 1]

‖WM‖ ‖U‖ ≥ ‖WM‖ ‖U‖ cos Θ = W T
MU = (WM−1 + ytMxtM)T U =

where last passage is the Inner product

W T
M−1U + ytMU

TxtM ≥ W T
M−1U + 1 ≥ W T

0 U +M = M

where ytMU
TxtM is ≥ 1

M ≤ ‖WM‖ ‖U‖ ≤ ‖U‖
√
M
(

max
t
‖xT‖

)
M ≤

(
‖U‖2

) (
max
t
‖xt‖2

)
∀U : min

t
ytU

txt ≥ 1

M =

(
min

U : γ(U)=1
‖U‖2

)(
max
t
‖xt‖2

)
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Some number depends on S
M can be exponential in md when the ball of positive and negative are very
closer and the length of U is super long and exponential in D.
If dataset barely separable then perceptron will make a number of mistakes
that is exponential in the parameter of the problem. U is a linear separator
and has exponential length
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