Lecture 13 - 27-04-2020

1.1 Linear prediction
We had ERM h

S={(x1,11)-(Tn,yn)} r, € R? y € {—1,+1} O(w) = Hyw'z, <0}

m

- 1
hs = arg min — Hywhz,} <0
s gheHDm; {yt t}_
The associated decisio problem is a NP problem so cannot be camputed ef-
ficientiy unless P = NP

Maybe we can approximate it, so a good solution that goes close to minimise

error.
This is called MinDisOpt

1.1.1 MinDisOpt

Instance: (z1,y1)...(Tn, y,) € {0,1}92{0,1}
Solutio:

w E QDminimising the number of indicest = 1,...m s.t. hhw xz; <0

Opt(S) is the smallest number of mislcassified example in S by any linear
classifier in Hp

where O%(S) is training error of ERM

Theorem : if P # NP, then Vc > 0 there are no polytime algorithms
(with r. t. the input size ©(m,)) that approximately solve every istance S
of MinDisOpt with a number of mistakes bounded by C - Opt(S).

If T am able to approximate it correclty this approximation will grow with
the size of the dataset.

VA (polytime) and VC' 3S U5 (A(S)) > clyg (fLS) (where hg is ERM)

~

Opt(S) = ls(hs)

This is not related with free lunch theorem (information we need to get base
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error for some learning problem). Free lunch: we need arbitrarirally informa-

tion to get such error. Here is we need a lot of computation to approximate
the ERM.

Assume Opt(S) = 0 ERM has zero training error on S
U eR? st. Vi=1,..m U 2, >0 S is linearly separable

- " . |

Figure 1.1: Tree building

We can look at the min

t_nllin yUTx, = (U) >0 We called this marginn of U on (z¢, y;)

We called in this way since % = min ty||2[|cos(O)

Figure 1.2: Tree building

where O is the angle



Figure 1.3: Tree building

whereﬁ is the distance separating hyperplane on closest training example .

S linearly separable and if i look at the sistem of this linear inequality:

ywrxy > 0
Ym WLy, > 0

We can solve it in polytime using a linear solver. So any package of linear
programming, and will be solved in linear time.

This is called feasibilty problem. We want a point y that satisfy all my
linear inequalities.

Figure 1.4: Feasibilty problem

When Opt(S) =0 is we can implememtn ERM efficiently using LP
(Linear programming).



They may overfitting since a lot of bias. When this condition of Opt is no
satisty we cannot do it efficiently. LP algorithm can be complicated so we
figure out another family of algorithm.

1.2 The Perception Algorithm

This came from late ’50s and was designed for psicology but have a general
utility in othe fields.

Perception Algorithm

Input : training set S = {(z¢, Yt).--(Tm, Ym) } r €RY oy € {—1,+1}
Init: w = (0,...0)

Repcat

read next (x,y;)

If yyw?z, < then w +— w + Yy

Until margin greater than 0 y(w) > 0 // w separates S

Output w

We know that y(w) = min; y,w?z, < 0 The question is, will it terminate
if S is linearly separable?
If ywlz, <0, then w +— w + y,2y
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Figure 1.5:

For simplicity our x are in this circle. Some are on the circonference on top

left with + sign and some in bottom right with — sign.

All minus flipped to the other side and the we can deal the +.

U is a separating hyperplane, how can i find it?
Maybe i can do something like the average:

1 m
U=—=> ym ?
mt:l

But actually don’t take the average of all of them. So do not take average of
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all, instead take the one that satisfy y,w” 2z, < 0 condition.
ywlz, <0 is a violated consstraint and we want it > 0.
Does w <— w + yx, fix it?

ye(w + g - )y = o'z + ||
We are trying to see what happen before and after the updates of w.

Snce ||z¢]| > 0 so is positive, the update increase margins, thus going to-
wards fixing violated constraints.

1.2.1 Perception convergence Theorem

dated early 60s On a linearly separable S, perceptron will converge after at
most M updates (when they touch in the figure) where:

M < ( min HUH2> (max thHz)
U:~rU)=1 t=1,.m

Algorithm is not able to do that. ALgorithm keeps looking till he get a vio-
lating constraint and then stops. This is bounded by the number of loops.

We said that y(U) = min; y,UT 2y > 0 when U is separator.

U T

Figure 1.6:

If i rescale U i can make the margin bigger (in particolar > 1)



The shortest min||U| s.t. y Uz, >1 Vit

Proof:
W, is local variable after M updates, I have zero vector Wy = (0, ...0)
tar is the index of training example that causes the M-th update.

We want to upper bound M (deriving upper and lower bound
on a certain quantity |W{| ||U]|)
where U is any s.t. y,UTz, > 1 Vt

W ll? = Wit + yemzen |* = [Warca P + lyemmen | + 2 yenas Wiy e =

= |Waraall® + llzeael? + 2 v Wi oo <

where v W 2o <0

< Nwar— I + |z ||?

M
IWarl < [Wall? + 3 el < M (max l]?)
=1

Wl U] < UIVM (max]adl)
since cos © € [—1, 1]
IWull 1012 [Warl| U] cos© = WEU = (Ways + gzan)' U =

where last passage is the Inner product

Wi U+ iUy > W U+1>WjU+M=M

where Yemr UTItM s >1

M < [ Wyl U] < JUIVM (max o))
M < (|U]]?) <m?XH.TtH2) YU mtinthtxt >1

M = ( min ||U||2) (max||xt||2>
U:vy(U)=1 t
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Some number depends on S

M can be exponential in md when the ball of positive and negative are very
closer and the length of U is super long and exponential in D.

If dataset barely separable then perceptron will make a number of mistakes
that is exponential in the parameter of the problem. U is a linear separator
and has exponential length



