Lecture 13 - 27-04-2020

1.1 Linear prediction

We had $ERM \hat{h}$

$$
S = \{(x_1, y_1)...(x_n, y_n)\} \qquad x_t \in \mathbb{R}^d \qquad y_t \in \{-1, +1\} \qquad \ell_t(w) = I\{y_t w^T x_t \le 0\}
$$

$$
\hat{h}_S = \arg \min_{h \in H_D} \frac{1}{m} \sum_{t=1}^m I\{y_t w^T x_t\} \le 0
$$

The associated decisio problem is a NP problem so cannot be camputed ef ficientiy unless $P \equiv NP$

Maybe we can approximate it, so a good solution that goes close to minimise error.

This is called MinDisOpt

1.1.1 MinDisOpt

Instance: $(x_1, y_1)...(x_n, y_n) \in \{0, 1\}^d x \{0, 1\}$ Solutio:

 $w \in Q^D$ minimising the number of indices $t=1,...m \; s.t. \; h_t w^T x_t \leq 0$

 $Opt(S)$ is the smallest number of mislcassified example in S by any linear classifier in H_D

where $\frac{Opt(S)}{m}$ is training error of ERM

Theorem : if $P \neq NP$, then $\forall c > 0$ there are no polytime algorithms (with r. t. the input size $\Theta(m_d)$) that approximately solve every istance S of MinDisOpt with a number of mistakes bounded by $C \cdot Opt(S)$.

If I am able to approximate it correclty this approximation will grow with the size of the dataset.

$$
\forall A \text{ (polytime)} \ and \ \forall C \ \exists S \qquad \hat{\ell}_S(A(S)) \ge c \cdot \hat{\ell}_S(\hat{h}_S) \text{ (where } \hat{h}_S \text{ is } ERM\text{)}
$$

$$
Opt(S) = \hat{\ell}_S(\hat{h}_S)
$$

This is not related with free lunch theorem (information we need to get base

error for some learning problem). Free lunch: we need arbitrarirally information to get such error. Here is we need a lot of computation to approximate the ERM.

Assume $Opt(S) = 0$ ERM has zero training error on S $\exists U \in \mathbb{R}^d \;\; \text{s.t.} \;\; \forall t = 1, ... m \qquad y_t U^T x_t > 0 \qquad S \;\text{is linearly separable}$

Figure 1.1: Tree building

We can look at the min

 $\min_{t=1,...m} y_t U$ ${}^{\overline{T}} x_t = \gamma(U) > 0$ We called this marginn of U on (x_t, y_t)

We called in this way since $\frac{\gamma(U)}{\|U\|} = \min t y_t \|x_t\| \cos(\Theta)$

Figure 1.2: Tree building

where Θ is the angle

Figure 1.3: Tree building

 $where \frac{\gamma(U)}{\|U\|} \text{ is the distance separating hyperplane on closest training example}.$ S linearly separable and if i look at the sistem of this linear inequality:

$$
\begin{cases} y_t w_T x_t > 0\\ y_m w_T x_m > 0 \end{cases}
$$

We can solve it in polytime using a linear solver. So any package of linear programming, and will be solved in linear time.

This is called **feasibilty problem**. We want a point y that satisfy all my linear inequalities.

Figure 1.4: Feasibilty problem

When $Opt(S) = 0$ is we can implememtn ERM efficiently using LP (Linear programming).

They may overfitting since a lot of bias. When this condition of Opt is no satisfy we cannot do it efficiently. LP algorithm can be complicated so we figure out another family of algorithm.

1.2 The Perception Algorithm

This came from late '50s and was designed for psicology but have a general utility in othe fields.

Perception Algorithm Input : training set $S = \{(x_t, y_t) ... (x_m, y_m)\}$ $x_t \in \mathbb{R}^d$ $y_t \in \{-1, +1\}$ Init: $w = (0, ...0)$ Repcat $\mathrm{read}\ \mathrm{next}\ (x_t, y_t)$ If $y_t w^T x_t \leq$ then $w \leftarrow w + y_t x_t$ Until margin greater than $0 \gamma(w) > 0 \frac{1}{w}$ w separates S Output w

We know that $\gamma(w) = \min_t y_t w^T x_t \leq 0$ The question is, will it terminate if S is linearly separable? If $y_t w^T x_t \leq 0$, then $w \longleftarrow w + y_t x_t$

Figure 1.5:

For simplicity our x are in this circle. Some are on the circonference on top left with $+$ sign and some in bottom right with $-$ sign.

All minus flipped to the other side and the we can deal the $+$. U is a separating hyperplane, how can i find it?

Maybe i can do something like the average:

$$
U = \frac{1}{m} \sum_{t=1}^{m} y_t x_t
$$
?

But actually don't take the average of all of them. So do not take average of

all, instead take the one that satisfy $y_t w^T x_t \leq 0$ condition. $y_t w^T x_t \leq 0$ is a violated consstraint and we want it > 0. Does $w \longleftarrow w + y_t x_t$ fix it?

$$
y_t(w + y_t \cdot x_t)^T x_t = y_t w^T x_t + ||x_t||^2
$$

We are trying to see what happen before and after the updates of w. SInce $||x_t|| > 0$ so is positive, the update increase margins, thus going towards fixing violated constraints.

1.2.1 Perception convergence Theorem

dated early 60s On a linearly separable S, perceptron will converge after at most M updates (when they touch in the figure) where:

$$
M \leq \left(\min_{U:\gamma(U)=1} \|U\|^2\right) \left(\max_{t=1...m} \|x_t\|^2\right)
$$

Algorithm is not able to do that. ALgorithm keeps looking till he get a violating constraint and then stops. This is bounded by the number of loops.

We said that $\gamma(U) = \min_t y_t U^T x_t > 0$ when U is separator.

$$
\forall t \quad y_t U^T x_t \ge \gamma(U) \quad \Leftrightarrow \quad \forall t \quad y_t \left(\frac{U}{\gamma(U)}\right)^T x_t \ge 1
$$

Figure 1.6:

If i rescale U i can make the margin bigger (in particolar > 1)

The shortest $min||U||$ s.t. $y_tU^Tx_t \ge 1 \quad \forall t$

Proof:

 W_m is local variable after M updates, I have zero vector $W_0 = (0, ...0)$ t_M is the index of training example that causes the $M-th$ update.

We want to upper bound M (deriving upper and lower bound on a certain quantity $||W|| ||U||$ where U is any s.t. $y_t U^T x_t \geq 1 \quad \forall t$

$$
||W_M||^2 = ||W_{M-1} + y_{tM}x_{tM}||^2 = ||W_{M-1}||^2 + ||y_{tM}x_{tM}||^2 + 2 \cdot y_{tM}W_{M-1}^T x_{tM} =
$$

=
$$
||W_{M-1}||^2 + ||x_{tM}||^2 + 2 \cdot y_{tM}W_{M-1}^T x_{tM} \le
$$

where $y_{tM}W_{M-1}^T x_{tM} \leq 0$

$$
\leq ||w_{M-1}||^2 + ||x_{tM}||^2
$$

$$
||W_M||^2 \le ||W_0||^2 + \sum_{i=1}^M ||x_t||^2 \le M \left(\max_t ||x_t||^2\right)
$$

........

.....

... MANCA ?????

$$
||W_M|| ||U|| \leq ||U||\sqrt{M} \left(\max_t ||x_t|| \right)
$$

since $\cos \Theta \in [-1, 1]$

 $||W_M|| ||U|| \ge ||W_M|| ||U|| \cos \Theta = W_M^T U = (W_{M-1} + y_{tM} x_{tM})^T U =$ where last passage is the Inner product

 $W_{M-1}^T U + y_{tM} U^T x_{tM} \ge W_{M-1}^T U + 1 \ge W_0^T U + M = M$ where $y_{tM}U^T x_{tM}$ is ≥ 1

$$
M \le ||W_M|| \, ||U|| \le ||U||\sqrt{M} \left(\max_t ||x_T||\right)
$$

$$
M \le (||U||^2) \left(\max_t ||x_t||^2\right) \quad \forall U : \min_t y_t U^t x_t \ge 1
$$

$$
M = \left(\min_{U:\gamma(U)=1} ||U||^2\right) \left(\max_t ||x_t||^2\right)
$$

Some number depends on S

 M can be exponential in md when the ball of positive and negative are very closer and the length of U is super long and exponential in D .

If dataset barely separable then perceptron will make a number of mistakes that is exponential in the parameter of the problem. U is a linear separator and has exponential length