
Lecture 14 - 28-04-2020

1.1 Linear Regression

Yesterday we look at the problem of emprical risk minismisation for a linear
classi�er. 0-1 loss is not good: discontinuous jumping from 0 to 1 and it's
di�fcult to optimise. Maybe with linear regression we are luckier.
Our data point are the form (x, y) x ∈ Rd regression, (ŷ − y)2 square loss.
We are able to pick a much nicer function and we can optimise it in a easier
way.

1.1.1 The problem of linear regression

Instead of picking -1 or 1 we just leave it as it is.

h(c) = wT x w ∈ Rd x = (x1, ..., xd, 1)

ŵ = arg min
w∈Rd

1

m

m∑
t=1

(wT xt − yt)2 ERM for (x1, y1)...(xm, ym)

How to compute the minimum?
We use the vector v of linear prediction
v = (wTx1, .., w

Txm)
and a vector of real valued labels
y = (y1, ..., ym) where v, y ∈ Rm

m∑
t=1

(wTxt − yt)2 = ‖v − y‖2

S is a matrix.

sT = [x1, ..., xm] d×m v = sw =

xt1...
xTm

w

So:
‖v − y‖2 = ‖sw − y‖2

ŵ = arg min
w∈Rd

‖sw − y‖2 where sw is the design matrix

F (w) = ‖sw − y‖2 is convex

1

∇F (w) =6 2sT (sw − y) = 0 sT sw = sTy

where sT is d×m and s is m× d and d 6= m
If sT s invertible (non singular) ŵ = (sT s)−1 sT y
And this is called Least square solutions (OLS)

We can check sT s is non-singular if x1, ..., xm span Rd

sT · s may not be always invertible. Also Linear regression is high bias
solution. ERM may under�t since linear predictor introduce big bias.
ŵ = (sT · s)−1 · sT · y is very instable: can change a lot when the the dataset
is perturbed.
This fact is called instability : variance error
It is a good model to see what happens and then try more so�sticated model.
Whenever ŵ is invertible we have to prove the instability. But there is a easy
�x!

1.1.2 Ridge regression

We want to stabilised our solution. If sT · s non-singular is a problem.

We are gonna change and say something like this:

ŵ = argmin
w
‖s · w − y‖2 ŵα = argmin

w

(
‖sw − y‖2 + α · ‖w‖2

)
where α is the regularisation term.

ŵα → ŵ for α→ 0
ŵα → (0, ..., 0) for α→∞

Figure 1.1:

2

ŵα has more bias than ŵ, but also less variance

∇
(
‖sw − y‖2 + α ‖w‖2

)
= 2

(
sT sw − sT y

)
+ 2αw = 0(

sT s+ α I
)
w = sT y

(d×m) (m× d) (d× d) (d×m) (d×m) (m× 1)

where I is the identity

ŵα =
(
sT s+ α I

)−1
sT y

where y1, ..., yα are eigen-values of sT s
y1, ..., yα + α > 0 eigenvalues of sT s+ αI
In this way we make it positive and semide�nite.
We can always compute the inverse and it is a more stable solution and stable
means do not over�t.

1.2 Percetron

Now we want to talk about algorithms.
Data here are processed in a sequential fashion one by one.
Each datapoint is processed in costant time Θ (d)
(check ytw

T ≤ 0 and in case w ← w + yt xt) and the linear model can be
stored in Θ(d) space.
Sequential processing scales well with the number of datapoints.
But also is good at dealing with scenarios where new data are generated at
all times.
Several scenario like:

� Sensor data

� Finantial data

� Logs of user

So sequential learning is good when we have lot of data and scenario in which
data comes in �ts like sensor.
We call it Online learning

3

1.2.1 Online Learning

It is a learning protocol and we can think of it like Batch learning. We have
a class H of predictors and a loss function ` and we have and algorith that
outputs an initial default predictor h1 ∈ H.

For t = 1, 2...
1) Next example (xt, yt) is observed
2) The loss `(ht(xt), yt) is observed (ytw

T xt ≤ 0)
3) The algorithm updates ht generating ht+1 (w ← w + yt xt)

The algorithm generates s sequence h1, h2, ... of models
It could be that ht+1 = ht occasionally
The update ht → ht+1 is local (it only uses ht and (xt, yt))
This is a batch example in which take the training set and generate a new
example.

(x1, y1)→ A→ h2

(x1, y1)(x2, y2)→ A→ h3

But if I have a non-learning algorithm i can look at the updates:

Figure 1.2:

This is a most e�cient way and can be done in a costant time. The batch
learning usually have single predictor while the online learning uses a se-
quence of predictors.

How do I evaluate an online learning algorithm A? I cannot use a single
model, instead we use a method called Sequential Risk.
Suppose that I have h1, h2... on some data sequence.

1

m

T∑
t=1

`(ht(x), yt) as a function of T

The loss on the next incoming example.

4

I would like something like this:

Figure 1.3:

We need to �x the sequence of data: I absorb the example into the loss
of the predictor.

`(ht(x), yt) −→ `t(ht)

I can write the sequential risk of the algorithm:

1

m

T∑
t=1

`t(ht)−min
h∈H

1

m

T∑
t=1

`t(h)

So the sequencial risk of the algorithm - the sequential risk of best predictor
in H (up to T).
This is a sequential similar of variance error. −→ is called Regret.

h∗T = argmin
h∈H

1

T

∑
t

`t(h)
1

T
`t(ht)−

1

T

∑
t

`t(h
∗
T)

5

1.2.2 Online Gradiant Descent (OGD)

It is an example of learning algorithm.
In optimisation we have one dimension and we want to minimise the function
i can compute the gradiant in every point.
We start from a point and get the derivative: as I get the derivative I can
see if is decreasing or increasing.

Figure 1.4:

f convex min
x
f(x) f Rd → R

xt+1 = xt + η∇f(xt) η > 0

wt+1 = wt + η∇`t(wt)

where η is the learning rate.

h(x) = wT x `t(w) = `(wT xt, yt) for istance `(wT xt, yt) = (wT xt−yt)2

Assumption `t is convex (to do optimisation easily) and di�erentiable (to
compute the gradiant)

6

