Lecture 15 - 04-05-2020

1.1 Regret analysis of OGD

We introduce the Regret.
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we build a loss function for example with the square loss.
The important thing is that ¢, {5, ... is a sequence of convex losses.

In general we define the regret in this way:
T T
Rr(u) = th(wt) - Z Ce(ue)
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The Gradiant descent is one of the simplest algorithm for minimising a convex
function. We recall the iteration did by the algorithm:

Wyp1 — wy — 0V f(wy) n; > 0 learning rate [ convex

f R — R that’s why use the gradiand instead of the derivative

Learning rate can depend on time and we approach the region of the function
f where the region is 0. We keep on moving in the X axes in the direction
where the function is decreasing.



1.1.1 Projected OGD

2 parameters: 7 > 0 and U > 0
Initialisation: w; = (0, ..., 0)
Fort = 1,2, ..

1) Gradiant step:

Wy = Wy — % Vi (wy) (e, ye) ~ b
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Figure 1.1:

2) Projection step:

Wiy = arg w:ﬁ%}i”g[] [lw — w£+1||

Projection of w;,, onto the ball of radius U.

Figure 1.2:

Now we define the Regret:
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We are interested in bounding the regret Ry (U;)

I will Fix ¢4, ..4, let U =Uj for U.
Taylor’s theorem for multivariate functions



Let’s look a univariate first f : R — R ( has to be twice differentiable)
w,u € R

Flu) = f(w) + @) (u =) + 5 F (@) (= w)?

For the multivariate case:
f:RY =R twice differentiable Vu,w € R?

1
fw) = fw) + V)" (u—w)+ 3 (u— w)" V2f(€) (u—w)
where £ is some point on the segment goining v and w. We have the Hessian
matrix of f:
0*f(z)

v f(l’)@] 8371 89[;]'36 i

If f is convex then, V2f is positive and semidefinite.
VeeRY VzeRY  2TV2f(z)2>0

Figure 1.3:

Now we can apply this results to our problem: in particular I rearrange the
factors

flw) = f(u) £V f(w)" (w—u)

This is Ok for f convex and differentiable.
I know that: u — w?V2f(£) (u — w) > 0 because f is convex.

Ce(wy) — Lo(u) < VE(we)" (w; — u) Linear Regret

How do we proceed?
The first step of the algorithm is : wy; = wy — 7, VL (wy) N = \—}%
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w' disappear and add minus sign. I am saying that ||w41 —u|| < |lwi, —ul|

Figure 1.4:

So is telling us that w;q is closer to u than wy,,
This holds since the ball is convex.

Now we go back adding and subtracting +5-—||wi41 — ul|?
_ 1 2 1 o 1 2 1 9o, 1 2
= 277t||wt ul| ST [weer — ull 2m||wt+1 ul] + 277t+1||wt+1 ul| +277t”wt+1 w

We group the 1,2 and 3,4 elements and sum them up.
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This is a telescopic sum: a; — ay + as — az + a3 — ag + a; — a; + 1 and
everything in the middle cancel out and remains first and last terms.
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wherew; =0  and  |lweq—ul|? <4U?  and  ||lw,, —w|]? = 07| VE(w)||?

We know that Ut:\% SO 771:\%:77

1 1 — /1l 1
Rr(U) < —U*——|w —U2+2U2§j(———)+
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T
Jwr = UlI* JJwr =U[? |1 5
+ - + - E Vi (w
M mr 2L 77t|| t( t)||



where red values cancel out.
[ assume that square loss is bounded by some number G%: ||V (wy)]|* < G?
Also, it’s a telescopic sum again and all middle terms cancel out.

ma V()| < G
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where red values cancel out.
. . T 1 2
Now how much is this sum thlﬁ.

It is bounder by the integral < flT\C/l—% <NT

Rr(U) < 2U2\/T+77GW = <£+nGQ)\/_
Ui Ui

n= /2
So finally:
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Rr(U) = %Z (C(wy) — L(w)  Vu:|lul| <U: Rp(U) =0 (%)

Basically my regret is gonna go to 0.
For ERMinH where |H| < oo, variance error vanishes at rate \/%

The bound UGQ\/g on regret holds for any sequence (1, /s, ... of convex

and affordable losses, If £;(w) = ¢(w? zy,y;) then the bound holds for any
sequence of data points (z1,v1), (2, ya)..
This is not a statistical assumption but mathematical so stronger.



