
Lecture 16 - 05-05-2020

1.1 Analysis of Perceptron in the non-separable

case using OGD framework.

We are �nishing up the part of online learning and gradiant descent.
Concrete example for the parameter G:

G = max
t
‖∇`t(wt)‖2 `t(w) = (wT xt − yt)2 ‖xt‖ ≤ X, |yt| ≤ U X

‖w‖ ≤ U, |wT xt| ≤ ‖w‖ ‖xt‖

where ‖w‖ U and ‖xt‖ X (so are bounded by U and X)

Now we want to �nd the gradiant.

‖∇`t(w)‖ ≤ 2 |wT xt − yt| ‖xt‖ ≤ 4U X‖xt‖ ≤ 4U X2

where wT xt bounded U X and yt bounded by U X

RT (u) = U G
√
8T ≤ 8(UX)2

√
2T

How about OGD for classi�cation?
The problem is that zero-one loss is not convex (also non-continous).

I{ytwT xt ≤ 0}

This is zero-one loss for linear classi�cation.

Figure 1.1:

w ← w − η∇`t(w) OGD

w ← w + yt xt I{ytwT xt ≤ 0} Perceptron

1

We want to make this equal with loss that is convex and also tell us bound
with zero one loss. So there is a bunch or problem.
So we want to make this equal but how?

`t(w) =
[
−ytwT xt

]
+

[z]t = max{0, z}
If we take the gradiant of this with respect to w:

∇`t(w) = −yt xt I{ytwT xt ≤ 0}

Now - this gradiant is exactly this `t(w) =
[
−ytwT xt

]
+

The problem is not comparable with the number of mistakes so I am not
going to have the number of mistakes.

How do I do it?
What if I just shift to the right?
Now this loss is an upper bound of the zero-one loss. And this is called
Hinge loss (where hinge take the door attached to the frame of the wall)

Figure 1.2: Hinge loss

Hinge loss: ht(w) =
[
1− ytwT xt

]
+
≥ I{ytwT xt ≤ 0}

∇ht(h) = −yt xt I{ytwT xt ≤ 1}
The problem is that it becames 0 later on than the original one.

w ← w − η∇ht(w) I{ytwTxt ≤ 0}
ytw

T xt ≤ 0 ⇒ ytw
Txt ≤ 1

We now apply OGD analysis to ht considering only the steps T where
I{ytwT

t xt ≤ 0} and we do not perform projection.

T∑
t=1

(ht (wt)− ht(u)) I{ytwT
t xt ≤ 0} ≤

2

≤ 1

2 η
‖U‖2+1

2

T∑
t=1

‖wt+1 − u‖
(
1

η
− 1

η

)
I{ytwT

t xt ≤ 0}+η G
2

2

T∑
t=1

I{ytwT
t xt ≤ 0}

where second factor cancel out

− 1

2 η
‖wT+1 − u‖2 ‖∇ht(w)‖ = |yt|‖xt‖ ≤ X G = X = max

t
‖xt‖

where yt in {−1, 1}
ytw

T
t xt ≤ 0 ⇒ ht(wt) ≥ 1

Figure 1.3:

T∑
t=1

I{ytwT
t xt ≤ 0} ≤

T∑
t=1

ht(wt)I{ytwT
t xt ≤ 0} ≤

T∑
t=1

ht(u) I{ytwT
t xt ≤ 0}+ 1

2 η
‖u‖2 + η

2
x2

T∑
t=1

I{ytwT
t xt ≤ 0}

where I.. cancel out to have a "nicer" upper bound.

MT =
T∑
t=1

I{ytwT
t xt ≤ 0}

MT ≤
T∑
t=1

ht(u) +
1

2 η
‖u‖2 + η

2
x2 MT

This is not a regret anymore! Here MT is the number of mistakes and I
compare it with the hinge loss (ht(u)).

I CAN'T USE THIS η = ‖u‖
x
√
MT

but we can replace it in MT .

MT ≤
T∑
t=1

ht(u) + ‖u‖X
√
MT

3

MT ≤
T∑
t=1

ht(u) + (‖u‖x)2 + ‖u‖x
√∑

t

ht(u)

w ← w + η yt xt I{ytwT
t xt ≤ 0} w = (0, ...0)

If I choose η > 0?

wt = η

t−1∑
s=1

ys xs I{yswT
s xs ≤ 0} ∀ η > 0

Also holds because it's true ∀η > 0

MT =
T∑
t=1

I{ytwT
t xt ≤ 0} invariant with respect to η > 0

It does not matter which η we choose. The number of mistakes is going to
be the same. This mean that the state of the algorithm (which depends on
mistakes) is gonna be the same.
I can run perceptron with η = 1 and pretend (in the analysis) it was run

with η = ‖U‖
X
√
MT

We go back to the bound of MT . We are actually free to choose any number
of U.
If (x1, y1), (x2, y2) is linearly separable then:
∃U s.t. yt U

Txt ≥ 1 ⇒ ht(u) = 0 ∀t

MT ≤ (‖U‖ X)2 the perceptron convergence theorem.

MT ≤ min
u∈Rd

 T∑
t=1

ht(u) + (‖U‖X)2 + ‖U‖X
√∑

t

ht(u)

This are called Oracle bounds, the perceptron knows which is the best U .

4

1.1.1 Strongly convex loss functions

We use this to analyse all class of algorithms that regularise the ERM which is
the support vector machine. We want to explain what happen using Support
vector Machine. For neural networks we cannot do this since NN are not
convex and there is not way to "convexify". Convexifying we lose the power
of NN.
We said that `t have to be convex. But i have a lot of types of convexity.

Figure 1.4: Example of more type of convex function

This two for example are both convex. In the left this always has a positive
curvature, while the right one we have a 0 curvature since is two straight
line and not di�erentiable. In other word, Hessian on the left positive and
de�nite. On the right Hessian is 0.
We are looking for strongly convex losses.
` di�erentiable is σ-strongly convex if:

∀u,w `(w)− `(u) ≤ ∇`(w)T (w − u)− σ

2
‖w − u‖2 σ > 0

σ-SC is equivalent to the Hessian having all strictly positive eigeinvalues.

Example, check if strictly convex:

`(w) =
1

2
‖w‖2 1

2
‖w‖2 − 1

2
‖u‖2 ≤? wT (w − u)− σ ‖w − u‖

2

2
whehre σ = 1

1

2
‖w‖2 − 1

2
‖u‖2 ≤? ‖w‖2 − wT u− ‖w − u‖

2

2

where 1
2
‖w‖2 cancel out

0 ≤ 1

2
‖w‖2 + 1

2
‖u‖2 − ‖w − u‖

2

2
− wT u

5

I put 0 = ...

0 =
1

2
‖w‖2 + 1

2
‖u‖2 − ‖w − u‖

2

2
− wT u

So this function is 1-strongly convex

Next lecture we are going to show that we can run OGD with strongly convex
functions. We are going to get a better bound. Our regret is gonna vanish
much faster than the case of simple convexity.
You can prove that if Hessian is 0, your regret is vanishing with a rate of U G√

T
.

We will shows with strong convexity the OGD will converge much faster with
a rate of lnT

T
.

This is what happen in optimisation, we prefer strictly convex function.

6

