Lecture 20 - 19-05-2020

1.1 Support Vector Machine Analysis
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The two are kinda equivalent
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What we do with w*?

1.1.1 Fritz John Optimality Conditions
min f(w) st g(w)<0t=1,..,m f,01, .., gm all differentiable
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If wq is optimal solution, then Ja = (ay, ..., a,,) € R™
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w* SVM solution
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where f(n) =V f(w*)
I={t:y,(w*)" 2, = 1} support vectors

We want a generalisation of this two non separable training set.



1.1.2 Non-separable case
1
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We cannot satisfy all the constraints since are inconsistent. Maybe we can
try to satisfy the most possible constrain so:

mm —Hw||2 th yowlx, >1-§&
where &; slack variables and & > 0 We want &; given w:

&= [1—yw' ] = hy(w) hinge loss

¢ = 11—y w! oy if ypwla, <1
! 0 otherwise

We replate this in the first equation and we get a convex function plus A-SC
function:
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And this is unconstrained and F(W) is A-S.C.

I also want to check my shape of the function is not changing.
Assume I can write the solution as:

m
w* = E QY Ty + U

t=1
where u is orthogonal to each of x4, ..., z, 2111 YTy = U
w'=v+u v=w"—u || < ||w
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Figure 1.1:



Now I can check the hinge loss:
he(v) = [1— ye(w*) @y + y u” xt]+ = hy(w")

Since 1, u” 2, = 0 this cancel out and we get the hinge loss.

F() = =3 h(w) + gl < F(w)

w' = Zatytxt a #0 & h(w*) >0
=1

Including ¢ : y;(w*)Ta; = 1

Figure 1.2:

Support vector are those in which I need slack variables in order to be satis-
fied.

Figure 1.3:

Flw) = — 3 k() + gl = - 3" f(w)

MANCA FORMULAA
We need to minimise the hinge loss and we use Pegasos.
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1.2 Pegasos: OGD to solve SVM

Stochastic gradiant descent.

Parameters: A > 0, 7' number of rounds

Set wy = (0, ...,0)

Fort=1,....T

1) Draw (2., y.;) at random from training set
2) Wiq1 = Wt — ntvgzt(wt)

Output @ = £ >, wy
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Ca(w) = hay(w) + §||w||2 w* = arg mln (E Z —”w||2>

Vs1, ..., sp realisation of zq, ..., zp
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- 1 . G .
; st(wy) < T ;&t(w )+ ST In(T"+1) OGD Analysis

G = mtaXHV&t(wt)H
In general G is random.
F)<Fw)+e Jo—w'] < |F(@) - Fw)| < Ljw—w’|

where F is the average of the losses: F(w;) = L 3™ £ (w;)
So we use Liptstik solution.
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I know now that:
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E[F (0] < F(w*) + %\iT In(T"+ 1)

General picture: Stochastic OGD, T can write my objective is an average of
strongly convex function. I sample for w

Flw) = 3" b (w)

Then i get the expectation to links OGD to minisation of the objective.



