Lecture 7 - 07-04-2020

Bounding statistical risk of a predictor
Design a learning algorithm that predict with small statistical risk
(D,6)  la(h) =E[{(y), h(x)]

were D is unknown
l(y,9) € [0,1] Vy,geyY

We cannot compute statistical risk of all predictor.

We assume statistical loss is bounded so between 0 and 1. Not true for all
losses (like logarithmic ).

Before design a learning algorithm with lowest risk, How can we estimate
risk?

We can use test error — way to measure performances of a predictor h. We
want to link test error and risk.

Test set S = {(2,v})...(x},,4,)} is a random sample from D

How can we use this assumption?

Go back to the definition of test error

Sample mean (IT: Media campionaria)

. 1
l(h) = — - > Ui b))
t=1
i can look at this as a random variable ¢(y,, h(z}))
E [4(y,, h(x}))] = €p(h) — risk
Using law of large number (LLN), i know that:

{ —s lp(h) as n— oo

We cannot have a sample of n = 0o so we will introduce another assumption:
the Chernoff-Hoffding bound

1.1 Chernoff-Hoffding bound

Z1,.... 2, tid random variable E[Z] =u

all drawn for the same distribution
t=1,...,n and 0<z,<1 t=1,...,n then Ve >0
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1 < _ IBES Y
P(E-Zzt>u+e>§62€2” or P(E-Zzt<u+s)§e%2

t=1 t=1

as sample size then |
Zy = 0Y{, h(X}) € 0,1
(X1, Y))...(X], YY) are iid therefore,

Y/ h(X]) t=1,..,n arealsoiid
We are using the bound of e to bound the deviation of this.

1.2 Union Bound

Union bound: a collection of event not necessary disjoint, then i know that
probability of the union of this event is the at most the sum of the probabil-
ities of individual events

Ai, Ay P(AULLUA) <Y P(A)

t=1

O &
0O
Figure 1.1: Example

that’s why <

P (10 () = to () | >¢)
This is the probability according to the random draw of the test set.

If test error differ from the risk by a number epsilon > 0. I want to bound
the probability. This two thing will differ by more than epsilon. How can i
use the Chernoff bound?
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16y (h) —tp(h) | > = ly(h)—lp(h)>e V {Ip(h)—Lly(h)>c¢
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Figure 1.2: Example

AB A=DB P(A) <P(B)
P(|€S/(h)—€D(h)|>5>§P<\€s/(h)—€[)(h)]> U P(|@D(h)—€5/(h)|>§

<P <As/ > (lp (h) + 6>—|—]P’ (és/ </lp(h)— 6) < 2€7%" = we call it §

The two events are disjoint

This mean that probability of this deviation is at least delta!

. 1 2
| by (h) —Llp(h) | <y/=—1In= with probability at least 1 —§

Test error of true estimate is going to be good for this value (9)
Confidence interval for risk at confidence level 1-delta.
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Figure 1.3: Example

I want to take § = 0,05 so that 1 — § is 95%. So test error is going to be an
estimate of the true risk which is precise that depend on how big is the test
set (n).

As n grows I can pin down the position of the true risk.

This is how we can use probability to make sense of what we do in practise.
If we take a predictor h we can compute the risk error estimate.



We can measure how accurate is our risk error estimate.
Test error is an estimate of risk for a given predictor (h).

E[¢(Y!, h(X)] = Lo (h)

h is fixed with respect to S’ — h does not depend on the test set. So
learning algorithm which produce h not have access to test set.
If we use test set we break down this equation.

Now, how to build a good algorithm?

Training set S = {(z1,v1) ... (Tm, Ym)} random sample

A A (S) = h predictor output by A given S where A is learning algo-
rithm as function of traning set S.

V.S A(S)e H e H

A

lp(h*) =mintp (h) ls (h*)is closed to {p (h*) — it is going to have small error
where ¢p (h*) is the training error of h*
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Figure 1.4: Example

This guy ¢p (h*) is closest to 0 since optimum
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Figure 1.5: Example

In risk we get opt in A* but in empirical one we could get another h' better
than A

In order to fix on a concrete algorithm we are going to take the empiri-
cal Islam minimiser (ERM) algorithm.

Ais ERM on H (A) = h = (&) argmin (s (h)

Once T piack & i can look at training error of ERM

I (h) ofh = A(S)
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where (g is the training error

Should /s <h> be close to £ (h) ?

I’'m interested in empirical error minimiser and do a trivial decomposition.

ly (ﬁ) = Ip (ﬁ) —Lq (h™) + — Variance error = Overfitting

+Lg (W) — Ly (fF)+ — Bias error = Underfitting
+0p (") — Bayes risk = Unavoidable

Even the best predictor is going to suffer that

f* is Bayes Optimal for (D,/)
Vh  Lp(h) ={p(f7)
If f*¢ H then {p (h*) > (p(f*)

If i pick h* I will pick some error because we are not close enough to the
risk.

We called this component bias error.

Bias error is responsible for underfitting (when training and test are close to
each but they are both high :( )

Variance error over fitting

-

Figure 1.6: Draw of how iL, h* and f* are represented

Variance is a random quantity and we want to study this. We can always
get risk from training error.



1.3 Studying overfitting of a ERM

We can bound it with probability. X
I add and subtract trivial traning error /g (h)

(p <71> —Lla(h*) = Ip (il) — s (h) +Ls <h> —lp(h") <
< 0 (h) . (h) 405 (h*) — p (h*) <
< Vtp (h) = s () |+ 105 () = o (1) | <
< 2-maz|lg(h) —lp (R) ]
(no probability here) R
Any given h minising /g (h)

Now assume we have a large deviation

Assume  {Up <fz) —lp(h*) >« = maz | ls (h) — (p (h) | > g

Weknowéd@)—ﬁp(h*) < 2-maz|ls(h) —tp(h)| =

~ Jhedm |és(h)—eD(h)|>g N

with |H| < oo
= U (lis) o0 1) >
2

P(gD(h)—eD(h*)>e) < P(U(|és(h)—zD(h)|)>§) <

<ZP<|£S(h)—eD(h)\>;> B S O

heH
Union Bound Chernoff. Hoffding bound (P(...))

62
< 2-|Hle =™

Solve for € 2-|H|e‘§m = 0

o[ H
2

Solve fore — &= 2
m )



‘o (h) ) < (2w A

m )

With probability at least 1 — ¢ with respect to random draw of S.
We want m >> In|H| — in order to avoid overfitting



