Lecture 9 - 07-04-2020

h is ERM predictor
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Now we do it with tree predictors

1.1 Tree predictors

X ={0,1}* — Binary classification
h:{0,1}* — Binary classification H1

How big is this class?

Take the size of codomain power the domain —s |H| = 22"
Can we have a tree predictor that predict every H in this class?
For every h: {0,1}¢ +— {—1,1} 3T

We can build a tree such that hr=~nh
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Figure 1.1: Tree building



L1,T9,X3,...,Tq

I can apply my analisys to this predictors
If I run ERM on H
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to (h) < minty (k) +\/— 24 In2 + In
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No sense! What we find about training set that we need?
Worst case of overfitting m >> 2P = | X| = training sample larger
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PROBLEM: cannot learn from a class to big ( H is too big)
I can control H just limiting the number of nodes.

Hy — tree T with at most N node, N << 2P
[Hy| ="

|Hn| = (# of trees with < N nodes)x(# of test on interval nodes )x( # labels on leaves)
[Hy| =@ x a x 2V M
N of which N — M are leaves

Figure 1.2: Tree with at most N node

®# of binary trees with N nodes, called Catalan Number
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1.1.1 Catalan Number

*We are using a binomial *
1 /2N -2 1 oN -2\ 1
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N en\k o . .
(K> < (?) from Stirling approximation

Counting the number of tree structure: a binary tree with exactly N nodes.
Catalan counts this number. — but we need a quantity to interpret
easily. So we compute it in another way.

Now we can rearrange everything.
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where we ignore 4 since we are going to use the log

ERM on Hy h
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. (ﬁ) < min gD(h)_,_\/z (A\'.(1+1n(2-d))+1n§)

were N - (1+1n(2-d)) = In(Hy)

In order to not overfit m >> N -Ind
N -1Ind << 2% for reasonable value of N
We grow the tree and a some point we stop.

(p(h) < lg(h)+e VheHy with probability at least 1 — ¢

remove N in Hy and include h on ¢
we remove the N index in Hy adding h on €

{p (h) < és(h)ﬁ—&h \V/hGHN
WiH—[0,1 ) wh)<1

heH
How to use this to control over risk?

P(HhEH 1 ls (h) — Lo (h) | >5h) <
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where /g is the prob my training set cases is true

< Z]P’(Ms(h)—é,j( | >gh) Y2l <

heH heH

<4 — since w(h) sum to 1 (Z)

heH

I want to choose  2¢ 27" = §w(h)

2¢72mM — §uw(h) &  — MANCA PARTEEEE —

therefore:
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lp(h) < ls(h) +\/2m (lnw(h) +ln5) w. p. atleast1 —6 Vhe H

Now, instead of using ERM we use

h = argmin <ﬂs (h) + \/ ﬁ ' (1“ w(lh) " ”%))

where /" term is the penalisation term

Since our class is very large we add this part in order to avoid overfitting.
Instead of minimising training error alone i minimise training error + penal-
isation error.

In order to pick w(h) we are going to use coding theory
The idea is I have my trees and i want to encode all tree predictors in H
using strings of bits.

o:H— {0,1}* coding function for trees
Vh,h € H o(h) not a prefix of o(h)
h # W where o(h) and o(h’) are string of bits

o is called istantaneous coding function
Istantaneous coding function has a property called kraft inequality

SooleWlicr  w(h) =277
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I can design o : H — {0,1}* istantaneous | o(h) |

In|Hy| =O (N -1Ind)
number of bits i need =  number of node in A

Even if 1 insist in istantaneous i do not lose ... - MANCA PARTE —

lo(h)| = O (N -Ind)

Using this ¢ and w(h) = 2~17(")|

- 1 2
< — . |¢-N- z . —
lp(h) < ls(h) +\/2m (C N -Ind+1In 5) w. p. at least 1 —§

where ¢ is a constant
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h:argl}}élg (fs(h) +\/% ((,'N-lnd—i-lng))

where m >> N - h-Ind
If training set size is very small then you should not run this algorithm.
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Figure 1.3: Algorithm for tree predictors
This blue curve is an alternative example. We can use Information criterion.
As T increase the number of nodes, N, decrease so fast. You should take
a smaller tree because it gives you a better bound. It’s a principle known as

Occam Razor ((if I have two tree with the same error, if one is smaller than
the other than i should pick this one).
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