
Lecture 9 - 07-04-2020

ĥ is ERM predictor

`D

(
ĥ
)
≤ min `D (h) +

√
2

m
ln

2H

δ
with prob. at least 1− δ

Now we do it with tree predictors

1.1 Tree predictors

X = {0, 1}d −→ Binary classi�cation

h : {0, 1}d −→ Binary classi�cation H1

How big is this class?
Take the size of codomain power the domain −→ |H| = 22

d

Can we have a tree predictor that predict every H in this class?
For every h : {0, 1}d ←→ {−1, 1} ∃T

We can build a tree such that hT = h

Figure 1.1: Tree building

X = (0, 0, 1, ..., 1) h (x) = −1

1

x1, x2, x3, ..., xd

I can apply my analisys to this predictors
If I run ERM on H

`D

(
ĥ
)
≤ min `D

(
ĥ
)
+

√
2

m
2d ln 2 + ln

2

δ
−→ ln |H|+ ln

2

δ

No sense! What we �nd about training set that we need?
Worst case of over�tting m >> 2D = |X| ⇒ training sample larger

PROBLEM: cannot learn from a class to big (H is too big)
I can control H just limiting the number of nodes.

HN −→ tree T with at most N node, N << 2D

|HN | =?

|HN | = (# of trees with ≤ N nodes)×(# of test on interval nodes)×(# labels on leaves)

|HN | =
⊗
× dM × 2N−M

N of which N −M are leaves

Figure 1.2: Tree with at most N node

⊗
of binary trees with N nodes, called Catalan Number

2

1.1.1 Catalan Number

*We are using a binomial *

1

N

(
2N − 2

N − 1

)
≤ 1

N

(
e
(2N − 2)

N − 1

)N−1
=

1

N
(2 e)N−1(

N

K

)
≤

(e n
k

)k
from Stirling approximation

Counting the number of tree structure: a binary tree with exactly N nodes.
Catalan counts this number. −→ but we need a quantity to interpret

easily. So we compute it in another way.
Now we can rearrange everything.

|HN | ≤ 1

N
(2 e)N−1 HM 2N−M ≤ (2 e d)N

d ≥ 2 ≤ dN−M

where we ignore 1
N
since we are going to use the log

ERM on HN ĥ

`D

(
ĥ
)
≤ min

h∈HN

`D (h) +

√
2

m

(
N · (1 + ln (2 · d)) + ln

2

δ

)
were N · (1 + ln (2 · d)) = ln (HN)

In order to not over�t m >> N · ln d
N · ln d << 2d for reasonable value of N
We grow the tree and a some point we stop.

`D (h) ≤ ˆ̀
S (h) + ε ∀h ∈ HN with probability at least 1− δ

remove N in HN and include h on ε
we remove the N index in HN adding h on ε

`D (h) ≤ ˆ̀
S (h) + εh ∀h ∈ H6N

W : H −→ [0, 1]
∑
h∈H

w (h) ≤ 1

How to use this to control over risk?

P
(
∃h ∈ H : | ˆ̀S (h)− `D (h) | > εh

)
≤

3

where ˆ̀
S is the prob my training set cases is true

≤
∑
h∈H

P
(
| ˆ̀S (h)− `D (h) | > εh

)
≤
∑
h∈H

2 e−2mεh2 ≤

≤ δ −→ since w(h) sum to 1

(∑
h∈H

)
I want to choose 2 e−2mεh2 = δ w(h)

2 e−2mεh2 = δ w(h) ⇔ � MANCA PARTEEEE �

therefore:

`D (h) ≤ ˆ̀
S (h) +

√
1

2m
·
(
ln

1

w(h)
+ ln

2

δ

)
w. p. at least 1− δ ∀h ∈ H

Now, instead of using ERM we use

ĥ = argmin
h∈H

(
ˆ̀
S (h) +

√
1

2m
·
(
ln

1

w(h)
+ ln

2

δ

))

where
√
... term is the penalisation term

Since our class is very large we add this part in order to avoid over�tting.
Instead of minimising training error alone i minimise training error + penal-
isation error.

In order to pick w(h) we are going to use coding theory

The idea is I have my trees and i want to encode all tree predictors in H
using strings of bits.

σ : H −→ {0, 1}∗ coding function for trees

∀h, h′ ∈ H σ(h) not a pre�x of σ(h′)
h 6= h′ where σ(h) and σ(h′) are string of bits

σ is called istantaneous coding function

Istantaneous coding function has a property called kraft inequality∑
h∈H

2−|σ(h) | ≤ 1 w(h) = 2−|σ(h) |

4

I can design σ : H −→ {0, 1}∗ istantaneous |σ(h) |

ln |HN | = O (N · ln d)
number of bits i need = number of node in h

Even if i insist in istantaneous i do not lose ... � MANCA PARTE �

|σ(h) | = O (N · ln d)

Using this σ and w(h) = 2−|σ(h) |

`D (h) ≤ ˆ̀
S (h) +

√
1

2m
·
(
c ·N · ln d+ ln

2

δ

)
w. p. at least 1− δ

where c is a constant

ĥ = argmin
h∈H

(
ˆ̀
S (h) +

√
1

2m
·
(
c ·N · ln d+ ln

2

δ

))
where m >> N · h · ln d
If training set size is very small then you should not run this algorithm.

Figure 1.3: Algorithm for tree predictors

This blue curve is an alternative example. We can use Information criterion.

As I increase the number of nodes, Nh decrease so fast. You should take
a smaller tree because it gives you a better bound. It's a principle known as
Occam Razor (if I have two tree with the same error, if one is smaller than
the other than i should pick this one).

5

Having N∗

6

