Department of Economics, Management and Quantitative Methods B-74-3-B Time Series Econometrics Academic year 2019-2020

Computer Session 3 - Forecasting US Inflation

In this exercise, we forecast the US inflation at quarterly data, defined as the percent variation of GDP deflator over the quarter, at annual rate (i.e., four times the change over each quarter), and we compare our forecast with forecasts from the Survey of Professional Forecasters. Both observed and professionally forecast series are in the file 'gdp price deflator.wf1'. The series of Observed inflation is called 'true' in the worksheet.

We have data spanning 1968Q4-2015Q1, see picture

- 1) We discard observations spanning 1968-1984 as it is possible that inflation changed dynamics after 1985 (for example, in response to a change in monetary policy).
- 2) We estimated the model using the period 1985-2010
- 3) We check our forecasts over the period 2011-2014 (we also compare our forecasts against the forecasts from the Survey of Professional Forecasters).

1 Model Selection and Estimation

1.1 Set the sample to 1985-2010 (write '1985q1 2010q4' in the box *Sample*) (this is default in the original file).

1.2 Unit root test

Preliminary investigation with a Unit root test suggests the possibility of a unit root (test: ADF, Case 2, lags selected using the BIC).

What should we conclude from the unit root test in this case? Strictly speaking, one cannot expect a unit root on inflation, as it means that the process is not bounded and does not revert to the mean: this clashes with our idea that there is "fair" level for inflation (i.e., the process tends to revert to a mean). The unit root may suggest that in fact the mean is subject to repeated breaks, that makes it look as a unit root, or that the autoregressive term is so strong to be very close to 1. A unit root may, in this case, give better forecasts (it is better to set rho=1 even if it is incorrect than estimating it).

For the sake of the presentation, however, we will discuss both using the model with unit root and without. We begin by discussing the model without unit root.

1.3 Preliminary investigation of the correlogram (model in levels)

This seems consistent with an ARMA(1,1).

1.4 Model selection (Model in Level)

We select the model using the Bayes information criterion. We consider up to a ARMA(4,4). (Note: the formula for BIC in e-views is calculated as *-2(l/T)+kln(T)/T*, where *l* is the maximized log-likelihood and *k* is the number of parameters). (Note: I used option CLS for the estimation).

The ARMA(1,1) is indeed selected.

1.5 Estimation and validation

Note: Estimation Method: ARMA Conditional Least Squares (BFGS / Marquardt steps)

(True is the name given to the observed inflation)

Portmanteau test on the residuals

Thus, the Portmanteau test on the residuals confirms that the $ARMA(1,1)$ is acceptable, if the series is stationary.

1.6 Preliminary investigation of the correlogram (model in first differences)

From this correlogram, it is very easy to see that we have a MA(1) (there is only one hit on the AC, and several hits for the PAC). The parameter should be negative.

1.7 Estimation and Validation (model in first differences)

We should select the model using the information criterion. However, the investigation of the correlogram (and previous investigation for the model in level) strongly recommend a MA(1), so we skip the selection via information criterion stage.

The MA(1) fits the data well.

2. Forecasting

We consider four different forecasts, always on the interval 2011Q1-2014Q4.

F0: the forecast from the Survey of Professional Forecasters

F1: the forecast from the $ARMA(1,1)$ assuming stationarity

F2: the forecast from the MA(1) assuming a unit root

F3: a naïve forecast, in which inflation is forecasted as the last available observation

To make the forecast F1, *estimate equation* "*true c AR(1) MA(1)"* with *sample* 1985q1-2010q4, then select the button *Forecast* and, therein, set the sample to 2011q1 2014q4 and option "*static*" and call the series generated in this way F1. To make the forecast F2, *estimate equation* "*D(true) c MA(1)"* with *sample* 1985q1-2010q4, then select the button *Forecast* and, therein, set the sample to 2011q1 2014q4 and option "*static*" and call the series generated in this way F2. Finally, generate F3=true(-1).

We then compute the forecast errors e0, e1, e2, e3, corresponding to the errors for the four forecasts for the sample 2011q1 2014q4

For this purpose, set sample 2011q1 2014q4 selecting *Sample* in the *Workfile*, then generate the series i.e., for example, *e0=F0-true* over the sample 2011q1 2014q4

To appreciate more clearly which forecast is better, we compute squares $e^{0^2/2}$, $e1^2$, $e2^2$, $e3^2$: we can look at these as measures of precision, as good forecasts have small (in absolute value) errors, and therefore the squares should be also low. We find that the averages of these series, over the sample 2011-2014, are

We then see that the forecast from the SPF is the most precise one, followed by the one from the model in first difference. The naïve forecast is markedly less precise.

3. Comparing forecasts

Although the SPF forecast is better, the squared errors are quite close to the squared errors of the two ARMA / unit root and MA forecasts. Are the differences statistically significant?

We can compare the SPF and unit root and MA forecasts looking at the differences $e^{0.2}$ -e2^{λ}2 at the twelve points in time (2011Q1 to 2014Q4), and check if the difference is significant. We do this by running a regression of the difference e0^2-e2^2 on a constant.

Notice, here, the estimation of the variance of the regression estimate using the HAC estimate.

We can conclude that both the estimates are equally precise.

We might also compare our forecast against the naïve forecast: in this case we obtain:

In this case, we see that the forecast from the model is statistically superior to the naïve forecast.