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Computer Session 3  - Forecasting US Inflation  
 

In this exercise, we forecast the US inflation at quarterly data, defined as the 

percent variation of GDP deflator over the quarter, at annual rate (i.e., four times 

the change over each quarter), and we compare our forecast with forecasts from the 

Survey of Professional Forecasters. Both observed and professionally forecast 

series are in the file ‘gdp price deflator.wf1’. The series of Observed inflation is 

called ‘true’ in the worksheet.   

We have data spanning 1968Q4-2015Q1, see picture  
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1) We discard observations spanning 1968-1984 as it is possible that inflation 

changed dynamics after 1985 (for example, in response to a change in 

monetary policy).  

2) We estimated the model using the period 1985-2010 

3) We check our forecasts over the period 2011-2014 (we also compare our 

forecasts against the forecasts from the Survey of Professional Forecasters).  



1 Model Selection and Estimation 

 
1.1 Set the sample to 1985-2010 (write ‘1985q1 2010q4’ in the box Sample) (this 

is default in the original file).   

 

1.2 Unit root test 

Preliminary investigation with a Unit root test suggests the possibility of a unit root 

(test: ADF, Case 2, lags selected using the BIC). 

 
 

Null Hypothesis: TRUE has a unit root  

Exogenous: Constant   

Lag Length: 3 (Automatic - based on SIC, maxlag=4) 
     
        t-Statistic   Prob.* 
     
     Augmented Dickey-Fuller test statistic -2.092440  0.2482 

Test critical values: 1% level  -3.494378  

 5% level  -2.889474  

 10% level  -2.581741  
     
     *MacKinnon (1996) one-sided p-values.  

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(TRUE)   

Method: Least Squares   

Sample: 1985Q1 2010Q4   

Included observations: 104   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     TRUE(-1) -0.229036 0.109459 -2.092440 0.0390 

D(TRUE(-1)) -0.592641 0.124049 -4.777469 0.0000 

D(TRUE(-2)) -0.453123 0.119946 -3.777713 0.0003 

D(TRUE(-3)) -0.240537 0.097991 -2.454693 0.0158 

C 0.488868 0.274206 1.782849 0.0777 
     
     R-squared 0.416638     Mean dependent var -0.019863 

Adjusted R-squared 0.393068     S.D. dependent var 1.295774 

S.E. of regression 1.009484     Akaike info criterion 2.903639 

Sum squared resid 100.8867     Schwarz criterion 3.030773 

Log likelihood -145.9892     Hannan-Quinn criter. 2.955144 

F-statistic 17.67647     Durbin-Watson stat 1.933521 

Prob(F-statistic) 0.000000    
     
     

 

 

  



What should we conclude from the unit root test in this case?  

Strictly speaking, one cannot expect a unit root on inflation, as it means that the 

process is not bounded and does not revert to the mean: this clashes with our idea 

that there is “fair” level for inflation (i.e., the process tends to revert to a mean). 

The unit root may suggest that in fact the mean is subject to repeated breaks, that 

makes it look as a unit root, or that the autoregressive term is so strong to be very 

close to 1. A unit root may, in this case, give better forecasts (it is better to set 

rho=1 even if it is incorrect than estimating it).  

 

For the sake of the presentation, however, we will discuss both using the model 

with unit root and without. We begin by discussing the model without unit root. 

 

1.3 Preliminary investigation of the correlogram (model in levels) 

 

Sample: 1985Q1 2010Q4 
    Included observations: 104 
    

       Autocorrelation Partial Correlation AC   PAC  Q-Stat  Prob 

              .|***   |        .|***   | 1 0.416 0.416 18.562 0 

       .|***   |        .|**    | 2 0.376 0.245 33.809 0 

       .|***   |        .|**    | 3 0.421 0.259 53.181 0 

       .|***   |        .|*     | 4 0.416 0.194 72.229 0 

       .|**    |        .|.     | 5 0.326 0.039 84.07 0 

       .|**    |        *|.     | 6 0.234 -0.076 90.229 0 

       .|*     |        *|.     | 7 0.164 -0.129 93.281 0 

       .|**    |        .|*     | 8 0.322 0.186 105.18 0 

       .|*     |        *|.     | 9 0.122 -0.12 106.92 0 

       .|.     |        *|.     | 10 0.025 -0.138 106.99 0 

       .|*     |        .|*     | 11 0.188 0.165 111.2 0 

       .|*     |        .|*     | 12 0.204 0.128 116.2 0 

 

This seems consistent with an ARMA(1,1).  

 

 

 

 

 

 

 

 



1.4 Model selection (Model in Level) 

We select the model using the Bayes information criterion. We consider up to a 

ARMA(4,4). (Note: the formula for BIC in e-views is calculated as  

-2(l/T)+kln(T)/T, where l is the maximized log-likelihood and k is the number of 

parameters). (Note: I used option CLS for the estimation).  

 

 

Iid MA(1) MA(2) MA(3) MA(4) 

iid 3.26226 3.161375 
 

3.165379 3.164661 3.118317 

AR(1) 3.108767 2.97428 3.007477 3.016271 3.054542 

AR(2) 3.076391 3.014657 3.040015 3.080197 3.076566 

AR(3) 3.045199 3.043961 3.081695 3.122922 3.118811 

AR(4) 3.030773 3.06319 3.093588 3.117743 3.036129 

 

The ARMA(1,1) is indeed selected. 

 

1.5 Estimation and validation 

Note: Estimation Method: ARMA Conditional Least Squares (BFGS / Marquardt 

steps) 

 

(True is the name given to the observed inflation) 
 

Dependent Variable: TRUE   

Method: ARMA Conditional Least Squares (BFGS / Marquardt steps) 

Sample: 1985Q1 2010Q4   

Included observations: 104   

Convergence achieved after 21 iterations  

Coefficient covariance computed using outer product of gradients 

MA Backcast: 1984Q4   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 1.991494 0.477151 4.173720 0.0001 

AR(1) 0.927567 0.054944 16.88201 0.0000 

MA(1) -0.698502 0.106051 -6.586487 0.0000 
     
     R-squared 0.314286     Mean dependent var 2.292682 

Adjusted R-squared 0.300708     S.D. dependent var 1.214939 

S.E. of regression 1.015977     Akaike info criterion 2.898000 

Sum squared resid 104.2531     Schwarz criterion 2.974280 

Log likelihood -147.6960     Hannan-Quinn criter. 2.928903 

F-statistic 23.14591     Durbin-Watson stat 1.987197 

Prob(F-statistic) 0.000000    
     
     Inverted AR Roots       .93   

Inverted MA Roots       .70   
     
     

 

  



Portmanteau test on the residuals 

Sample: 1985Q1 2010Q4 
    Included observations: 104 
    Q-statistic probabilities adjusted for 2 ARMA terms 

  

       Autocorrelation Partial Correlation AC   PAC  Q-Stat  Prob 

              .|.     |        .|.     | 1 -0.024 -0.024 0.0628 
        .|.     |        .|.     | 2 -0.054 -0.054 0.3749 
        .|*     |        .|*     | 3 0.085 0.083 1.1653 0.28 

       .|*     |        .|*     | 4 0.145 0.147 3.4755 0.176 

 

Thus, the Portmanteau test on the residuals confirms that the ARMA(1,1) is 

acceptable, if the series is stationary. 

 

1.6 Preliminary investigation of the correlogram (model in first differences) 

D(TRUE) 
      Sample: 1985Q1 2010Q4 

    Included observations: 104 
    

       Autocorrelation Partial Correlation AC   PAC  Q-Stat  Prob 

       
     ***|.     | 

     ***|.     
| 1 -0.454 -0.454 22.057 0 

       *|.     | 
     ***|.     
| 2 -0.082 -0.362 22.775 0 

       .|.     | 
      **|.     
| 3 0.034 -0.263 22.899 0 

       .|.     |        *|.     | 4 0.071 -0.104 23.462 0 

       .|.     |        .|.     | 5 0.004 0.003 23.464 0 

       .|.     |        .|.     | 6 -0.026 0.035 23.543 0.001 

       *|.     | 
      **|.     
| 7 -0.169 -0.224 26.788 0 

       .|**    |        .|.     | 8 0.279 0.072 35.733 0 

       .|.     |        .|*     | 9 -0.042 0.137 35.942 0 

      **|.     |        *|.     | 10 -0.263 -0.204 44.065 0 

       .|*     |        *|.     | 11 0.147 -0.128 46.623 0 

       .|*     |        .|.     | 12 0.103 0.024 47.891 0 

 

From this correlogram, it is very easy to see that we have a MA(1) (there is only 

one hit on the AC, and several hits for the PAC). The parameter should be 

negative. 

 



1.7 Estimation and Validation (model in first differences) 

We should select the model using the information criterion. However, the 

investigation of the correlogram (and previous investigation for the model in level) 

strongly recommend a MA(1), so we skip the selection via information criterion 

stage. 
 

Dependent Variable: D(TRUE)   

Method: ARMA Conditional Least Squares (BFGS / Marquardt steps) 

Sample: 1985Q1 2010Q4   

Included observations: 104   

Convergence achieved after 16 iterations  

Coefficient covariance computed using outer product of gradients 

MA Backcast: 1984Q4   
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -0.021719 0.025484 -0.852253 0.3961 

MA(1) -0.755535 0.065017 -11.62056 0.0000 
     
     R-squared 0.377804     Mean dependent var -0.019863 

Adjusted R-squared 0.371704     S.D. dependent var 1.295774 

S.E. of regression 1.027097     Akaike info criterion 2.910394 

Sum squared resid 107.6027     Schwarz criterion 2.961247 

Log likelihood -149.3405     Hannan-Quinn criter. 2.930996 

F-statistic 61.93538     Durbin-Watson stat 1.958513 

Prob(F-statistic) 0.000000    
     
     Inverted MA Roots       .76   
     
     

 

 

Sample: 1985Q1 2010Q4 
    Included observations: 104 
    Q-statistic probabilities adjusted for 1 ARMA term 

  

       Autocorrelation Partial Correlation AC   PAC  Q-Stat  Prob 

              .|.     |        .|.     | 1 -0.008 -0.008 0.0065 
        .|.     |        .|.     | 2 -0.05 -0.05 0.2793 0.597 

       .|*     |        .|*     | 3 0.077 0.076 0.9186 0.632 

       .|*     |        .|*     | 4 0.129 0.128 2.7426 0.433 

 

The MA(1) fits the data well.  

 

  



2. Forecasting  
We consider four different forecasts, always on the interval 2011Q1-2014Q4. 

 

F0: the forecast from the Survey of Professional Forecasters 

F1: the forecast from the ARMA(1,1) assuming stationarity 

F2: the forecast from the MA(1) assuming a unit root 

F3: a naïve forecast, in which inflation is forecasted as the last available 

observation 

 

To make the forecast F1, estimate equation “true c AR(1) MA(1)” with sample 

1985q1-2010q4, then select the button Forecast and, therein, set the sample to 

2011q1 2014q4 and option “static” and call the series generated in this way F1. 

To make the forecast F2, estimate equation “D(true) c MA(1)” with sample 

1985q1-2010q4, then select the button Forecast and, therein, set the sample to 

2011q1 2014q4 and option “static” and call the series generated in this way F2.  

Finally, generate F3=true(-1). 

 

We then compute the forecast errors e0, e1, e2, e3, corresponding to the errors for 

the four forecasts for the sample 2011q1 2014q4 

For this purpose, set sample 2011q1 2014q4 selecting Sample in the Workfile, then 

generate the series i.e., for example, e0=F0-true over the sample 2011q1 2014q4 
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To appreciate more clearly which forecast is better, we compute squares e0^2, 

e1^2, e2^2, e3^2: we can look at these as measures of precision, as good forecasts 

have small (in absolute value) errors, and therefore the squares should be also low. 

We find that the averages of these series, over the sample 2011-2014, are  

 

E0SQ E1SQ E2SQ E3SQ 

 Mean 0.60265 0.697612 0.687184 1.231669 

We then see that the forecast from the SPF is the most precise one, followed by the 

one from the model in first difference. The naïve forecast is markedly less precise.  

 

 

3. Comparing forecasts 
Although the SPF forecast is better, the squared errors are quite close to the 

squared errors of the two ARMA / unit root and MA forecasts. Are the 

differences statistically significant?  

We can compare the SPF and unit root and MA forecasts looking at the 

differences e0^2-e2^2 at the twelve points in time (2011Q1 to 2014Q4), and 

check if the difference is significant. We do this by running a regression of the 

difference e0^2-e2^2 on a constant. 
Dependent Variable: E0SQ-E2SQ 

 Method: Least Squares 
  Sample: 2011Q1 2014Q4 
  Included observations: 16 
  HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 

        bandwidth = 3.0000) 
  

     Variable Coefficient Std. Error t-Statistic Prob.   

     C -0.08453 0.120027 -0.70429 0.492 

     R-squared 0     Mean dependent var -0.08453 

Adjusted R-squared 0     S.D. dependent var 0.445643 

S.E. of regression 0.445643     Akaike info criterion 1.281866 

Sum squared resid 2.978969     Schwarz criterion 1.330152 

Log likelihood -9.25493     Hannan-Quinn criter. 1.284338 

Durbin-Watson stat 1.363205 
   Notice, here, the estimation of the variance of the regression estimate using the 

HAC estimate.  

We can conclude that both the estimates are equally precise.  

 

 



 

 

We might also compare our forecast against the naïve forecast: in this case we 

obtain: 
Dependent Variable: E3SQ-E2SQ 

 Method: Least Squares 
  Sample: 2011Q1 2014Q4 
  Included observations: 16 
  HAC standard errors & covariance (Bartlett kernel, Newey-West fixed 

        bandwidth = 3.0000) 
  

     Variable Coefficient Std. Error t-Statistic Prob.   

     C 0.544485 0.202907 2.683422 0.017 

     R-squared 0     Mean dependent var 0.544485 

Adjusted R-squared 0     S.D. dependent var 1.239716 

S.E. of regression 1.239716     Akaike info criterion 3.328104 

Sum squared resid 23.05345     Schwarz criterion 3.376391 

Log likelihood -25.6248     Hannan-Quinn criter. 3.330576 

Durbin-Watson stat 2.289506 
    

In this case, we see that the forecast from the model is statistically superior to the 

naïve forecast. 

 

 

 


