

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Economia, Management e Metodi Quantitativi

Academic Year 2019-2020 Time Series Econometics Fabrizio Iacone

Chapter 5, Parametric Estimation, part 1

Topics: Estimation from the Correlogram

Estimation : correlogram based estimate

Also known as "Yule Walker" estimate: this estimate is based on the autocorrelation function (the correlogram) and is obtained matching the theoretical and the sample moments (also "method of moments" estimate).

$$AR(1) (|\phi| < 1):$$

$$\gamma_0 = \frac{\sigma^2}{1 - \phi^2}, \ \gamma_1 = \frac{\sigma^2}{1 - \phi^2} \phi, \ \rho_1 = \phi$$

the estimates are obtained replacing the theoretical moments by the sample ones: compute the sample moments $\hat{\gamma}_0$ and $\hat{\gamma}_1$, and then $\hat{\rho}_1$: the estimate of ϕ and of σ^2 are

$$\widehat{\phi} = \widehat{\rho}_{1}$$

$$\widehat{\sigma^{2}} = \left(1 - \widehat{\phi}^{2}\right)\widehat{\gamma}_{0}$$

This can be seen as a linear system in ϕ_1, \dots, ϕ_p .

Replacing the theoretical moments $\gamma_0, \ldots, \gamma_p$ with the sample ones, $\hat{\gamma}_0, \ldots, \hat{\gamma}_p$, the estimates $\hat{\phi}_1, \ldots, \hat{\phi}_p$ are

$$\begin{pmatrix} \hat{\phi}_{1} \\ \hat{\phi}_{2} \\ \dots \\ \hat{\phi}_{p-1} \\ \hat{\phi}_{p} \end{pmatrix}^{-1} \\ \begin{pmatrix} \hat{\gamma}_{0} & \hat{\gamma}_{1} & \dots & \hat{\gamma}_{p-2} & \hat{\gamma}_{p-1} \\ \hat{\gamma}_{1} & \hat{\gamma}_{0} & \dots & \hat{\gamma}_{p-3} & \hat{\gamma}_{p-2} \\ \dots & \dots & \dots & \dots & \dots \\ \hat{\gamma}_{p-2} & \hat{\gamma}_{p-3} & \dots & \hat{\gamma}_{0} & \hat{\gamma}_{1} \\ \hat{\gamma}_{p-1} & \hat{\gamma}_{p-2} & \dots & \hat{\gamma}_{1} & \hat{\gamma}_{0} \end{pmatrix}^{-1} \begin{pmatrix} \hat{\gamma}_{1} \\ \hat{\gamma}_{2} \\ \dots \\ \hat{\gamma}_{p-1} \\ \hat{\gamma}_{p} \end{pmatrix}$$

Given these estimates $\hat{\phi}_1, \dots, \hat{\phi}_p$ and given the sample moments $\hat{\gamma}_0, \dots, \hat{\gamma}_p$, we can then compute the estimate of σ^2

$$\widehat{\sigma^2} = \widehat{\gamma}_0 - \widehat{\phi}_1 \widehat{\gamma}_1 - \dots - \widehat{\phi}_p \widehat{\gamma}_p$$

MA(1)

We can apply the same principle to the MA(1). Recall

$$\gamma_0 = (1 + \theta^2)\sigma^2, \gamma_1 = \theta\sigma^2, \rho_1 = \frac{\theta}{1 + \theta^2}$$

then we can replace ρ_1 by the corresponding sample moment and estimate θ solving

$$\widehat{\rho}_{1} = \frac{\theta}{1+\theta^{2}},$$

$$\widehat{\rho}_{1}\theta^{2} - \theta + \widehat{\rho}_{1} = 0$$

$$\widehat{\theta}_{1} = \frac{1-\sqrt{1-4\widehat{\rho}_{1}^{2}}}{2\widehat{\rho}_{1}}, \quad \widehat{\theta}_{2} = \frac{1+\sqrt{1-4\widehat{\rho}_{1}^{2}}}{2\widehat{\rho}_{1}}$$

If $\theta \neq 1$ we cannot say if $\theta < 1$ or $\theta > 1$; however, if $|\hat{\rho}_1| < 1/2$ and we want an invertible model for Y_t , choose $\hat{\theta} = \hat{\theta}_1$. Next, having $\hat{\theta}$ and $\hat{\gamma}_0$, estimate σ^2 as

$$\widehat{\sigma^2} = \frac{\widehat{\gamma}_0}{1+\widehat{\theta}^2}$$

ARMA(1,1)

We can apply the same procedure for the ARMA(1, 1): since

$$\gamma_0 = \sigma^2 \left(1 + \frac{(\phi + \theta)^2}{1 - \phi^2} \right)$$
$$\rho_1 = \frac{(\theta + \phi)(1 + \theta\phi)}{1 + \theta^2 + 2\phi\theta}$$
$$\rho_2 = \phi\rho_1$$

we can compute the sample moments $\hat{\gamma}_0$, $\hat{\rho}_1$ and $\hat{\rho}_2$ and, assuming that there is no common factor ($\theta \neq -\phi$ in this case) estimate

$$\widehat{\phi} = \frac{\widehat{\rho}_2}{\widehat{\rho}_1},$$

then estimate θ solving

$$\widehat{\rho}_{1} = \frac{\left(\theta + \widehat{\phi}\right)\left(1 + \theta\widehat{\phi}\right)}{1 + \theta^{2} + 2\widehat{\phi}\theta}$$

and finally σ^2 as

$$\widehat{\sigma^2} = \widehat{\gamma}_0 \left(1 + \frac{\left(\widehat{\phi} + \widehat{\theta}\right)^2}{1 - \widehat{\phi}^2} \right)^{-1}$$

ARMA(p,q)

We can use the same technique to estimate any other ARMA(p,q) (again, assuming no common factor).

Examples of correlogram based estimates

suppose that Y_1, \ldots, Y_T are observed and let

$$\overline{Y} = \frac{1}{T} \sum_{t=1}^{T} Y_t, \, \widehat{\gamma}_j = \frac{1}{T} \sum_{t=1}^{T-j} (Y_t - \overline{Y})(Y_{t+j} - \overline{Y}), \, \widehat{\rho}_j = \frac{\widehat{\gamma}_j}{\widehat{\gamma}_0}$$

Example 1. AR(1)

$$Y_{t} = c + \phi Y_{t-1} + \varepsilon_{t}, \varepsilon_{t} \ iid(0, \sigma^{2})$$
$$\overline{Y} = 1.5, \ \widehat{\gamma}_{0} = 3, \ \widehat{\gamma}_{1} = 2.1$$

For the AR(1), $\rho_1 = \phi$, so

 $\widehat{\phi} = \widehat{\rho}_{1}$ and $\widehat{\phi} = 2.1/3 = 0.7$; from $\gamma_{0} = \frac{\sigma^{2}}{1-\phi^{2}}$ then $\widehat{\sigma^{2}} = \widehat{\gamma}_{0} \left(1 - \widehat{\phi}^{2}\right)$

and compute $\widehat{\sigma^2} = 3(1 - 0.7^2) = 1.53$. Finally, from $\mu = \frac{c}{1-\phi}$ then

$$\widehat{c} = \widehat{\mu} \Big(1 - \widehat{\phi} \Big)$$

and using $\hat{\mu} = \overline{Y}$, compute $\hat{c} = 1.5(1 - 0.7) = 0.45$.

Example 2. AR(2)

 $Y_{t} = c + \phi_{1}Y_{t-1} + \phi_{2}Y_{t-2} + \varepsilon_{t}, \varepsilon_{t} \ iid(0, \sigma^{2})$ $\overline{Y} = 6, \ \widehat{\gamma}_{0} = 10, \ \widehat{\gamma}_{1} = 5, \ \widehat{\gamma}_{2} = 1$

For the AR(2),

$$\rho_1 = \frac{\phi_1}{1 - \phi_2}, \, \rho_2 = \frac{\phi_1^2 + \phi_2 - \phi_2^2}{1 - \phi_2}$$

so $\hat{\phi}_1$ and $\hat{\phi}_2$ are the solutions of

$$\widehat{\rho}_1 = \frac{\widehat{\phi}_1}{1 - \widehat{\phi}_2}, \ \widehat{\rho}_2 = \frac{\widehat{\phi}_1^2 + \widehat{\phi}_2 - \widehat{\phi}_2^2}{1 - \widehat{\phi}_2}$$

SO

$$\widehat{\phi}_2 = \frac{\widehat{\rho}_2 - \widehat{\rho}_1^2}{1 - \widehat{\rho}_1^2}, \, \widehat{\phi}_1 = \widehat{\rho}_1 \left(1 - \widehat{\phi}_2 \right)$$

and in this case $\hat{\rho}_1 = 0.5$, $\hat{\rho}_2 = 0.1$ so $\hat{\phi}_1 = 0.6$, $\hat{\phi}_2 = -0.2$.

Next, recalling that $\gamma_0 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma^2$,

$$\widehat{\sigma^2} = \widehat{\gamma}_0 - \widehat{\phi}_1 \widehat{\gamma}_1 - \widehat{\phi}_2 \widehat{\gamma}_2$$

so in this case $\widehat{\sigma^2} = 7.2$. Also, from $\mu = \frac{c}{1 - \phi_1 - \phi_2}$ then $\widehat{c} = \widehat{\mu} \Big(1 - \widehat{\phi}_1 - \widehat{\phi}_2 \Big)$

and using $\hat{\mu} = \overline{Y}$, compute $\hat{c} = 3.6$.

Example 3. MA(1)

$$Y_{t} = c + \varepsilon_{t} + \theta \varepsilon_{t-1}, \varepsilon_{t} \ iid(0, \sigma^{2})$$
$$\overline{Y} = 1, \, \widehat{\gamma}_{0} = 5, \, \widehat{\gamma}_{1} = 2$$

For the MA(1),

$$\rho_1=\frac{\theta}{1+\theta^2},$$

note that $\hat{\rho}_1(1+\hat{\theta}^2) - \hat{\theta} = 0$ is a second degree equation in $\hat{\theta}$, so it has two solutions,

$$\widehat{\theta}_{i,ii} = \frac{1 \pm \sqrt{1 - 4\widehat{\rho}_1}}{2\widehat{\rho}_1}$$

Taking

$$\widehat{\theta} = \widehat{\theta}_i = \frac{1 - \sqrt{1 - 4\widehat{\rho}_1}}{2\widehat{\rho}_1}$$

since in this case $\hat{\rho}_1 = 0.4$, then $\hat{\theta} = 0.5$. From

$$\gamma_0 = (1 + \theta^2)\sigma^2$$

we compute $\widehat{\sigma^2} = 5/(1 + 0.5^2) = 4$.
Finally, using $\widehat{\mu} = \overline{Y}$, we compute $\widehat{c} = 1$.

The fact that there are two values of $\hat{\theta}$ that are associated with a given $\hat{\rho}_1$ is not a surprise, as we know that the same autocorrelation structure is generated by two values of θ , say θ_i and θ_{ii} , which are such that $\theta_i = 1/\theta_{ii}$.

Although both $\hat{\theta}_i$ and $\hat{\theta}_{ii}$ are valid solutions of $\hat{\rho}_1(1+\hat{\theta}^2) - \hat{\theta} = 0$, one should present one estimate (only), so it is not acceptable to say that the estimate is

$$\widehat{\theta}_{i,ii} = \frac{1 \pm \sqrt{1 - 4\widehat{\rho}_1}}{2\widehat{\rho}_1}$$

(as this would two estimates).

Here, I choose $\hat{\theta}_i$ as this is the one that yields invertibility.