

UNIVERSITÀ DEGLI STUDI DI MILANO Dipartimento di Economia, Management e Metodi Quantitativi

Academic Year 2019-2020 Time Series Econometics Fabrizio Iacone

Chapter 5, Parametric Estimation, part 1

Topics: Estimation from the Correlogram

Estimation: correlogram based estimate

Also known as "Yule Walker" estimate: this estimate is based on the autocorrelation function (the correlogram) and is obtained matching the theoretical and the sample moments (also "method of moments" estimate).

$$
AR(1) \left(|\phi| < 1 \right):
$$
\n
$$
\gamma_0 = \frac{\sigma^2}{1 - \phi^2}, \quad \gamma_1 = \frac{\sigma^2}{1 - \phi^2} \phi, \quad \rho_1 = \phi
$$

the estimates are obtained replacing the theoretical moments by the sample ones: compute the sample moments $\hat{\gamma}_0$ and $\hat{\gamma}_1$, and then $\hat{\rho}_1$: the estimate of ϕ and of σ^2 are

$$
\widehat{\phi} = \widehat{\rho}_1
$$

$$
\widehat{\sigma^2} = \left(1 - \widehat{\phi}^2\right)\widehat{\gamma}_0
$$

This can be seen as a linear system in $\phi_1,...,\phi_p$.

Replacing the theoretical moments $\gamma_0, \ldots, \gamma_p$ with the sample ones, $\hat{\gamma}_0, \ldots, \hat{\gamma}_p$, the estimates $\hat{\phi}_1, \ldots, \hat{\phi}_p$ are

$$
\begin{pmatrix}\n\hat{\varphi}_1 \\
\hat{\varphi}_2 \\
\vdots \\
\hat{\varphi}_{p-1} \\
\hat{\varphi}_p\n\end{pmatrix}
$$
\n=\n
$$
\begin{pmatrix}\n\hat{\gamma}_0 & \hat{\gamma}_1 & \cdots & \hat{\gamma}_{p-2} & \hat{\gamma}_{p-1} \\
\hat{\gamma}_1 & \hat{\gamma}_0 & \cdots & \hat{\gamma}_{p-3} & \hat{\gamma}_{p-2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
\hat{\gamma}_{p-2} & \hat{\gamma}_{p-3} & \cdots & \hat{\gamma}_0 & \hat{\gamma}_1 \\
\hat{\gamma}_{p-1} & \hat{\gamma}_{p-2} & \cdots & \hat{\gamma}_1 & \hat{\gamma}_0\n\end{pmatrix}\n\begin{pmatrix}\n\hat{\gamma}_1 \\
\hat{\gamma}_2 \\
\vdots \\
\hat{\gamma}_{p-1} \\
\hat{\gamma}_p\n\end{pmatrix}
$$

Given these estimates $\widehat{\phi}_1, \ldots, \widehat{\phi}_p$ and given the sample moments $\widehat{\gamma}_0, \ldots, \widehat{\gamma}_p$, we can then compute the estimate of σ^2

$$
\widehat{\sigma^2} = \widehat{\boldsymbol{\gamma}}_0 - \widehat{\boldsymbol{\phi}}_1 \widehat{\boldsymbol{\gamma}}_1 - \ldots - \widehat{\boldsymbol{\phi}}_p \widehat{\boldsymbol{\gamma}}_p
$$

$MA(1)$

We can apply the same principle to the MA(1). Recall

$$
\gamma_0 = (1+\theta^2)\sigma^2, \gamma_1 = \theta\sigma^2, \rho_1 = \frac{\theta}{1+\theta^2}
$$

then we can replace ρ_1 by the corresponding sample moment and estimate θ solving

$$
\widehat{\rho}_1 = \frac{\theta}{1 + \theta^2},
$$

$$
\widehat{\rho}_1 \theta^2 - \theta + \widehat{\rho}_1 = 0
$$

$$
\widehat{\theta}_1 = \frac{1 - \sqrt{1 - 4\widehat{\rho}_1^2}}{2\widehat{\rho}_1}, \widehat{\theta}_2 = \frac{1 + \sqrt{1 - 4\widehat{\rho}_1^2}}{2\widehat{\rho}_1}
$$

If $\theta \neq 1$ we cannot say if $\theta < 1$ or $\theta > 1$; however, if $|\hat{\rho}_1|$ < 1/2 and we want an invertible model for Y_t , choose $\widehat{\theta} = \widehat{\theta}_1$. Next, having $\widehat{\theta}$ and $\widehat{\gamma}_0$, estimate σ^2 as

$$
\widehat{\sigma^2} = \frac{\widehat{\gamma}_0}{1 + \widehat{\theta}^2}
$$

$ARMA(1,1)$

We can apply the same procedure for the $ARMA(1,1)$: since

$$
\gamma_0 = \sigma^2 \left(1 + \frac{(\phi + \theta)^2}{1 - \phi^2} \right)
$$

$$
\rho_1 = \frac{(\theta + \phi)(1 + \theta\phi)}{1 + \theta^2 + 2\phi\theta}
$$

$$
\rho_2 = \phi \rho_1
$$

we can compute the sample moments $\hat{\gamma}_{0}$, $\hat{\rho}_1$ and $\hat{\rho}_2$ and, assuming that there is no common factor ($\theta \neq -\phi$ in this case) estimate

$$
\widehat{\phi} \, = \, \frac{\widehat{\rho}_2}{\widehat{\rho}_1},
$$

then estimate θ solving

$$
\widehat{\rho}_1 = \frac{(\theta + \widehat{\phi})(1 + \theta \widehat{\phi})}{1 + \theta^2 + 2\widehat{\phi}\theta}
$$

and finally σ^2 as

$$
\widehat{\sigma}^2 = \widehat{\gamma}_0 \left(1 + \frac{\left(\widehat{\phi} + \widehat{\theta} \right)^2}{1 - \widehat{\phi}^2} \right)^{-1}
$$

 $ARMA(p,q)$

We can use the same technique to estimate any other $ARMA(p,q)$ (again, assuming no common factor).

Examples of correlogram based estimates

suppose that Y_1, \ldots, Y_T are observed and let

$$
\overline{Y} = \frac{1}{T} \sum_{t=1}^{T} Y_t, \widehat{\gamma}_j = \frac{1}{T} \sum_{t=1}^{T-j} (Y_t - \overline{Y}) (Y_{t+j} - \overline{Y}), \widehat{\rho}_j = \frac{\widehat{\gamma}_j}{\widehat{\gamma}_0}
$$

Example 1. $AR(1)$

$$
Y_t = c + \phi Y_{t-1} + \varepsilon_t, \varepsilon_t \text{ iid}(0, \sigma^2)
$$

$$
\overline{Y} = 1.5, \hat{\gamma}_0 = 3, \hat{\gamma}_1 = 2.1
$$

For the AR(1), $\rho_1 = \phi$, so

$$
\hat{\phi} = \hat{\rho}_1
$$

and $\hat{\phi} = 2.1/3 = 0.7$; from $\gamma_0 = \frac{\sigma^2}{1-\phi^2}$ then

$$
\hat{\sigma}^2 = \hat{\gamma}_0 \left(1 - \hat{\phi}^2\right)
$$

and compute $\sigma^2 = 3(1 - 0.7^2) = 1.53$. Finally, from $\mu = \frac{c}{1-\phi}$ then

$$
\widehat{c} = \widehat{\mu}\Big(1-\widehat{\phi}\Big)
$$

and using $\hat{\mu} = \bar{Y}$, compute $\hat{c} = 1.5(1 - 0.7) = 0.45$.

Example 2. $AR(2)$

 $Y_t = c + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \varepsilon_t$, ε_t iid $(0, \sigma^2)$ $\overline{Y} = 6, \hat{\gamma}_0 = 10, \hat{\gamma}_1 = 5, \hat{\gamma}_2 = 1$

For the $AR(2)$,

$$
\rho_1 = \frac{\phi_1}{1 - \phi_2}, \, \rho_2 = \frac{\phi_1^2 + \phi_2 - \phi_2^2}{1 - \phi_2}
$$

so $\hat{\phi}_1$ and $\hat{\phi}_2$ are the solutions of

$$
\widehat{\rho}_1 = \frac{\widehat{\phi}_1}{1 - \widehat{\phi}_2}, \widehat{\rho}_2 = \frac{\widehat{\phi}_1^2 + \widehat{\phi}_2 - \widehat{\phi}_2^2}{1 - \widehat{\phi}_2}
$$

SO

$$
\widehat{\boldsymbol{\phi}}_2 = \frac{\widehat{\rho}_2 - \widehat{\rho}_1^2}{1 - \widehat{\rho}_1^2}, \widehat{\boldsymbol{\phi}}_1 = \widehat{\rho}_1 \left(1 - \widehat{\boldsymbol{\phi}}_2 \right)
$$

and in this case $\hat{\rho}_1 = 0.5$, $\hat{\rho}_2 = 0.1$ so $\hat{\phi}_1 = 0.6$, $\hat{\phi}_2 = -0.2$.

Next, recalling that $\gamma_0 = \phi_1 \gamma_1 + \phi_2 \gamma_2 + \sigma^2$,

$$
\widehat{\sigma^2} = \widehat{\gamma}_0 - \widehat{\phi}_1 \widehat{\gamma}_1 - \widehat{\phi}_2 \widehat{\gamma}_2
$$

so in this case $\widehat{\sigma}^2$ = 7.2. Also, from $\mu = \frac{c}{1-\phi_1-\phi_2}$ then $\widehat{c} = \widehat{\mu} \left(1 - \widehat{\phi}_1 - \widehat{\phi}_2 \right)$

and using $\hat{\mu} = \overline{Y}$, compute $\hat{c} = 3.6$.

Example 3. $MA(1)$

$$
Y_t = c + \varepsilon_t + \theta \varepsilon_{t-1}, \varepsilon_t \text{ iid}(0, \sigma^2)
$$

$$
\overline{Y} = 1, \hat{\gamma}_0 = 5, \hat{\gamma}_1 = 2
$$

For the MA(1),

$$
\rho_1=\frac{\theta}{1+\theta^2},
$$

note that $\hat{p}_1(1+\hat{\theta}^2)-\hat{\theta}=0$ is a second degree equation in $\hat{\theta}$, so it has two solutions,

$$
\widehat{\theta}_{i,ii} = \frac{1 \pm \sqrt{1 - 4\widehat{\rho}_1}}{2\widehat{\rho}_1}
$$

Taking

$$
\widehat{\theta} = \widehat{\theta}_i = \frac{1 - \sqrt{1 - 4\widehat{\rho}_1}}{2\widehat{\rho}_1}
$$

since in this case $\hat{\rho}_1 = 0.4$, then $\hat{\theta} = 0.5$. From

$$
\gamma_0 = (1 + \theta^2)\sigma^2
$$

we compute $\widehat{\sigma}^2 = 5/(1 + 0.5^2) = 4$.
Finally, using $\widehat{\mu} = \overline{Y}$, we compute $\widehat{c} = 1$.

The fact that there are two values of $\widehat{\theta}$ that are associated with a given $\hat{\rho}_1$ is not a surprise, as we know that the same autocorrelation structure is generated by two values of θ , say θ_i and θ_{ii} , which are such that $\theta_i = 1/\theta_{ii}$.

Although both $\widehat{\theta}_i$ and $\widehat{\theta}_{ii}$ are valid solutions of $\widehat{\rho}_1\left(1+\overline{\widehat{\theta}}^2\right)-\widehat{\theta}=0$, one should present one estimate (only), so it is not acceptable to say that the estimate is

$$
\widehat{\theta}_{i,ii} = \frac{1 \pm \sqrt{1 - 4\widehat{\rho}_1}}{2\widehat{\rho}_1}
$$

(as this would two estimates).

Here, I choose $\hat{\theta}_i$ as this is the one that yields invertibility.