Lezione 1 – 23/09/2019

venerdì 1 novembre 2019 19:40

Exam

Open-ended question and computer out to comment + Mini project

BOOKS time series analysis j.D Hamilton

Introduction to time series and forecasting Brokwell Peter ${\sf J}$

Stanza 4 lun 12,30 - 14.30

Time series

Study data observed over time using statistic technic. What happen today depend on what happened yesterday.

Block of observation between two days:

Y1, y2 ... This are all observed

t = T, t = 1-Y1, y2 , ... Yt, Yt+1, ... YT

We can observe that:

• YT depends on Ys if s < t

NO OBSERVATIONS ARE MISSING

• Yt not depends on Ys if s > t

What happen today does not depends on what happens tomorrow

Vector {y1, y2 ..n, Yt, Yt+1, ...YT} ' Is a time series Observation depends on the past but not in the futures

It's a random vector that contains random variables with mean, variance, standard deviation and correlation

µ -> mean

 σ -> standard deviation

- γ -> variance
- p -> correlation

OPERATORS

lag operator : L L⁻¹ $Y_t = Y_{t+1}$

First difference operator: $\Delta = 1 - L$ $\Delta Y_t = Y_t - Y_{t-1}$ $\Delta^2 Y_t = (1 - L)^2 Y_t = Y_t - 2Y_{t-1} + Y_{t-2}$

Inverse of lagging to go in the future

 $\begin{array}{ll} L^{-1} \mathbf{Y}_t = \mathbf{Y}_{t+1} & \rightarrow & \mathbf{Y}_t = L \ \mathbf{Y}_{t+1} \\ \downarrow \\ \frac{\mathbf{Y}_t}{L} = \mathbf{Y}_{t+1} \end{array}$

Distribution of all coin tossing is the same and are independent. At 100° toss we have $1\!\!\!/_2$ probability. Y \to Tossing a coin

Vector is one sample of 1 observation only.

Stationary and Ergocity

One single realisation { $Y_{1, ...,} Y_{T}$ }' { Y_{t} } $_{t}^{\infty} = -\infty$ There are t components in this observation

- IDENTICAL → All moments are the same There is not much heterogeneity over time
- INDIPENDENT → All events are independent There is not much dependence over time

If there is a low dependency maybe it would work

Ex

 $Y_t, Y_2, ..., Y_{t-1}, Y_t, ..., Y_T$ We can delete Y_2, Y_{t-1} to remove dependency. Y_t depended on Y_{t-1} , but not on Y_{t-2} and so on. With elimination we have smaller number of observation and they are independent

RESTRICT HETEROGENETICITY

Covariance stationary $E(Y_t) = \mu \forall t$ *Weak stationarity*

Strict stationarity \rightarrow require all distribution are the same So, distribution doesn't change

SUFFICIENT CONDITION FOR STATIONARITY

White noises

I can obtain stationarity process using

$$Yt = \mu + \sum_{j=0}^{\infty} \varphi_j \ \varepsilon_t - j$$

 ∞

E = 0 Var = σ^2 Mean is the same

IF.
$$\sum_{j=0}^{\infty} \varphi_j < \infty$$
 \Rightarrow After some time we got 0. Like

integral, exist when they push to ∞

 ε_t is white noise, then Y_t is stationary What I'm trying to do is breaking dependence

So two condition:

- 1) We go to 0 very quickly
- 2) Independence

 $\mbox{MIXING} \rightarrow$ one theoretical restriction that makes dependence "go away"

Example

Y_t = μ + Yt WHERE μ → outcome of coin toss of 1 € Yt → outcome of coin the 1 £ coin

 $\frac{1}{2}\mu + \frac{1}{2}Yt$ → Expected value All dependent to 1 € coin Sample average

 $E(X_t) = 1$ but $E(Y_t)$ When M = 1: $E(X_t | M = 1) = 3/2$ $E(X_t | \mu = 0) = \frac{1}{2}$

Ergodicity (Heuristic)

When I have an identical process and get average. When I take sample average, I take population average. The moments are not too strange.

Examples

1. Skipped for now

2. MA1 Model

 $\{\varepsilon_t\}_t^{\infty} = -\infty$ WHERE $E(\varepsilon_t) = 0$, VAR $(\varepsilon_t) = \sigma^2$

$$\{Y_t\}_t^\infty = -\infty$$

 $Y_t = \mu + \varepsilon_t + \theta \varepsilon_{t-1}$

Its ergodicity doesn't depend on what happened before

$$Y_t = \frac{c}{1-\phi} + \sum_{j=0}^{\infty} \varphi_j \ \varepsilon_t - j$$

Go to 0 quickly ... Ergotic