
Lecture 20 - 19-05-2020

1.1 Support Vector Machine Analysis

min
w∈R

1

2
‖w‖2 s.t ytw

T xt ≥ 1 t = 1, ...,m

max
γ>0

γ2 s.t. ‖u‖2 < 1(?) yt u
T xt ≥ γ t = 1, ...,m

The two are kinda equivalent

yt

(
u

γ

2
)
xt ≥ 1 t = 1, ...,m w =

u

γ
‖u‖2 = ‖w‖2γ2 = 1, γ2 =

1

‖w‖2

max
1

‖w‖2
 min ‖w‖2 w∗ =

u∗

γ∗

γ2‖w‖2 = 1 is redundant! ytw
Txt ≥ 1 t = 1, ...,m

What we do with w∗?

1.1.1 Fritz John Optimality Conditions

min
w∈Rd

f(w) s.t gt(w) ≤ 0 t = 1, ...,m f, g1, .., gm all di�erentiable

If w0 is optimal solution, then ∃α = (α1, ..., αm) ∈ Rm

∇f(w0) +
∑
t∈I

αt∇gt(w0) = 0 I = {t : gt(w0) = 0}

f(n) =
1

2
‖w‖2 gt(w) = 1− ytwT xt, ∇gt(w∗) = −yt xt

w∗ SVM solution

w∗ −
∑
t∈I

αtytxt = 0 ⇔ w∗ =
∑
t∈I

αtytxt

where f(n) = ∇f(w∗)

I = { t : yt(w
∗)T xt = 1} support vectors

We want a generalisation of this two non separable training set.
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1.1.2 Non-separable case

min
w∈Rd

1

2
‖w‖2 s.t ytw

T xt ≥ 1

We cannot satisfy all the constraints since are inconsistent. Maybe we can
try to satisfy the most possible constrain so:

min
w∈Rd

1

2
‖w‖2 +

1

2

m∑
t=1

ξt ytw
T xt ≥ 1− ξt

where ξt slack variables and ξ > 0 We want ξt given w:

ξt =

{
1− ytwT xt if ytw

Txt < 1

0 otherwise
ξt =

[
1− ytwT xt

]
= ht(w) hinge loss

We replate this in the �rst equation and we get a convex function plus λ-SC
function:

min
w∈Rd

F (w) F (w) =
1

m

m∑
t=1

ht(w) +
1

2
‖w‖2

And this is unconstrained and F (W ) is λ-S.C.

I also want to check my shape of the function is not changing.
Assume I can write the solution as:

w∗ =
m∑
t=1

αt yt xt + u

where u is orthogonal to each of x1, ..., xm
∑m

t=1 αt yt xt = v

w∗ = v + u v = w∗ − u ‖v‖ ≤ ‖w∗‖

Figure 1.1:
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Now I can check the hinge loss:

ht(v) =
[
1− yt(w∗)∗xt + yt u

T xt
]
+

= ht(w
∗)

Since yt u
T xt = 0 this cancel out and we get the hinge loss.

F (v) =
1

m

∑
t

ht(w
∗) +

1

2
‖w‖2 ≤ F (w∗)

w∗ =
m∑
t=1

αtytxt αt 6= 0 ⇔ ht(w
∗) > 0

Including t : yt(w
∗)Txt = 1

Figure 1.2:

Support vector are those in which I need slack variables in order to be satis-
�ed.

Figure 1.3:

F (w) =
1

m

m∑
t=1

ht(w) +
1

2
‖w‖2 =

1

m

m∑
t=1

`t(w)

MANCA FORMULAA
We need to minimise the hinge loss and we use Pegasos.
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1.2 Pegasos: OGD to solve SVM

Stochastic gradiant descent.

Parameters: λ > 0, T number of rounds
Set w1 = (0, ..., 0)
For t = 1, ..., T
1) Draw (xzt, yzt) at random from training set
2) wt+1 = wt − ηt∇`zt(wt)
Output w̄ = 1

T

∑
twt

`zt(w) = hzt(w) +
1

2
‖w‖2 w∗ = arg min

w∈R∗

(
1

m

m∑
t=1

ht(w) +
λ

2
‖w‖2

)

∀s1, ..., sT realisation of z1, ..., zT

1

T

m∑
t=1

`st(wt) ≤
1

T

m∑
t=1

`st(w
∗) +

G2

2λT
ln(T + 1) OGD Analysis

G = max
t
‖∇`st(wt)‖

In general G is random.

F (w̄) ≤ F (w∗) + ε ‖w̄ − w∗‖ ≤? |F (w̄)− F (w∗)| ≤ L‖w̄ − w∗‖

where F is the average of the losses: F (wt) = 1
m

∑m
s=1 `s(wt)

So we use Liptstik solution.

E [`zt(wt)|z1, ..., zt−1] =
1

m

m∑
s=1

`s(wt) E [X ] = E [E [X|Y ] ]

Now we use Jensen inequality:

E [F (w̄)] ≤J E

[
1

T

T∑
t=1

F (wt)

]
= E

[
1

T

T∑
t=1

E [ `zt(wt) | z1, ..., zt−1 ]

]
=

= E

[
1

T

T∑
t=1

`zt(wt)

]
≤ E

[
1

T

T∑
t=1

`zt(w
∗)

]
+

E[G2]

2λT
ln(T + 1) =

= E

[
1

T

T∑
t=1

E[`zt(w
∗)|z1, ..., zt−1]

]
+

E[G2]

2λT
ln (T + 1) =
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= E

[
1

T

T∑
t=1

F (w∗)

]
+
E[G2]

2λT
ln(T + 1) = = F (w∗) +

E[G2]

2λT
ln(T + 1)

E[G2] ≤? We are bounding G2 ∀s1, .., sT

∇`st(wt) = −yst xst I{hst(wt) > 0}+ λw `s(w) = ht(w) +
1

2
‖w‖2

vt = yst xst I{hst(wt) > 0}, ∇`st(wt) = −vt + λwt ηt =
1

λ t

wt+1 = wt − ηt∇`t(wt) = wt + ηt vt − ηt λwt =

(
1− 1

t

)
wt +

1

λ t
vt =

‖∇`st(wt)‖ ≤ ‖vt‖+ λ‖wt‖ ≤ X + λ‖wt‖ X = max
t
‖xt‖

wt+1 =

(
1− 1

t

)
wt +

1

λ t
vt w1 = (0, ...0) wt =

∑
t

βtvt

Fix s < t 1
λ s

√
s

βs =
1

λ s

t∏
r=s+1

(
1− 1

r

)
=

1

λ s

t∏
t=s+1

r − 1

r
=

1

λ s

s

t

s

s+ 1

s+ 1

s+ 2
...
t− 1

t
wt+1 =

1

λ t

t∑
s=1

√
s

I know now that:

‖∇`st(wt)‖ ≤ X + λ‖wt‖ ≤ Xt‖
1

t

t∑
s=1

√
s‖ ≤ X +

1

t

t∑
s=1

‖vs‖

‖∇`st(wt)‖ ≤ 2X G2 ≤ 4x2

E[F (w̄] ≤ F (w∗) +
2x2

λT
ln(T + 1)

General picture: Stochastic OGD, I can write my objective is an average of
strongly convex function. I sample for w

F (w) =
1

m

m∑
t=1

`t(w)

Then i get the expectation to links OGD to minisation of the objective.
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