
Lecture 21 - 25-05-2020

1.1 Pegasos in Kernel space

Objective function was

Fλ(w) =
1

m

m∑
t=1

ht(w) +
1

2
‖w‖2 w ∈ Rd

wT+1 =
1

λT

T∑
t=1

yst xst I{hst(wt) > 0} s1, ..., st (realised draws in training)

K Hk = {
∑
i

αik(xi, ·), αi, xi} g ∈ Hk

Fλ =
1

m

m∑
t=1

ht(g) +
1

2
‖g‖2 ht(g) = [1− yt g(xt) ]+

gT+1 =
1

λT

T∑
t=1

yst k(xst, ·) I{hst(gt) > 0}

where red part is vst

1.2 Stability

A way to bound the risk of a predictor.
Controlling the variance error and leave to the user the job to minimise the
bias.
Variance error is due to the fact that the predictor an algorithm generate
from the training set will depends strongly on the training set itself. If we
perturb the training set our predictor will change a lot.

Minimisation of training error ⇒ predictor changes if training set if per-
turbed. ⇒ risk of over�tting
Stability is the opposite since avoid over�tting when we perturbing the train-
ing set.

� S Training set (xt, yt)...(xm, ym)

� loss function `
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� distribution D

h : X → Y `D(h) risk of h
zt = (xt, yt) `(ht, zt) = `(h(xt), yt)

ˆ̀
s(h) =

1

m

m∑
t=1

`(h, zt)

Perturbation z′t = (x′t, y
′
t) also drawn from D

S(t)is S where zt is replaced by z′t hs = A(S)

A learning algorithm is ε-stable (ε > 0) h
(t)
s = A(S(t))

`(h(t)s , zt)− `(hs, zt)

we expect this subtraction result to be positive.

E
[
`(h(t)s , zt)− `(hs, zt)

]
≤ ε ∀t = 1, ...m

where E[ ]→ s, z′t
zt and z

′
t come from D both

E
[
`(hs, z

′
t)− `(h(t)s , z′t)

]
≤ ε

Theorem

If A is ε-stable, then

E
[
`D(hs)− ˆ̀

s(hs)
]
≤ ε

Proof: S zt = (xt, yt) s′ z′t = (x′t, y
′
t) D

E
[
ˆ̀
s(hs)

]
= E

[
1

m

m∑
t=1

`(hs, zt)

]
=

1

m

m∑
t=1

E [`(hs, zt)] =
1

m

m∑
t=1

E
[
`(h(t)s , z

′
t)
]

`D(hs) = E [`(hs, z
′
t)|S] =

1

m

m∑
t=1

E [`(hs, z
′
t)]

Average with respect to random draw of S
E [`D(hs)] =

1
m

∑m
t=1 E [`(hs, z

′
t)]

E
[
`D(hs)− ˆ̀

s(hs)
]
=

1

m

m∑
t=1

E
[
`(hs, z

′
t)− `(h(t)s , z′t

]
≤ ε

A stable algorithm is not over�tting (but they still under�t!).
So if an ERM algorithm is ε-stable, it would be pretty good.
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Theorem

If A is ε-stable and it approximates ERM in a class H:

ˆ̀
s ≤ min

h∈H
ˆ̀
s(h) + γ ∀s, hs = A(S)

for some γ > 0, then:

E [`D(hs)] ≤ min
h∈H

`D(h) + ε+ γ

Proof

E [`D(hs)] = E
[
`D(hs)− ˆ̀

s(hs)
]
+ E

[
ˆ̀
s(hs)− ˆ̀

s(h
∗)
]
+ E [`s(h

∗)]

h∗ = argmin
h∈H

`D(h)

E
[
ˆ̀(h∗)

]
= `D(h

∗) −→ E

[
1

m

∑
t

`(h∗, zt)

]
=

1

m

∑
t

E [`(h∗, zt)]

where red is `D(h
∗)

`(·, z) is a convex function `(w, z)
∃L > 0 |`(w, z)− `(z, z)| ≤ L‖w − w′‖
z = (x, y)
In the case of SVM, `(w, z) =

[
y wT x

]
+
∃L > 0 ∀z ∀w,w′

|`(w, z)− `(w′, z)| ≤ L‖w − w′‖

where ell is Lipschitz

Theorem

Let ` be convex, Lipschitz and di�erentiable.
Consider A A(S) = ws where

ws = arg min
w∈Rd

(
ˆ̀
s(w) +

λ

2
‖w‖2

)
If ` is hinge loss, then A is SVM .

then A is (2L)2

λm
-stable ∀λ > 0

Proof

Fix λ > 0 Fs(w) = ˆ̀
s(w) +

λ
2
‖w‖2

ws = arg min
w∈Rd

Fs(w) w(t)
s = arg min

w∈Rd
F (t)
s (w)
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`(ws, z
′
t)− `(w(t)

s , z
′
t) ≤ ε ∀s, z′t ∀t

Use Lipschtiz
|`(ws, z′t)− `(w(t)

s , z
′
t)| ≤ L‖ws − w(t)

s ‖

w = ws, w
′ = w

(t)
s

Fs(w
′)− Fs(w) = ˆ̀(w′)− ˆ̀(w) +

1

2
‖w′‖2 − λ

2
‖w‖2 =

= ˆ̀(t)
s (w′)−ˆ̀(t)s +

1

m
(`(w′, zt)− `(w, zt))−

1

m
(`(w′, z′t)− `(w, z′t))+

λ

2
(‖w′‖2−‖w‖2) =

= F (t)
s (w′)− F (t)

S (w) +
1

m
(`(w′, zt)− `(w, zt))−

1

m
(`(w′, z′t)− `(w, z′t)) ≤

where red is ≤ 0

≤ | 1
m
`(w′, zt)− `(w, zt)|+

1

m
|`(w′, z′t)− `(w, z′t)| ≤

�� MANCAAAAAAA �-

Fs(w)− Fs(w′) ≤
2L

m
‖w − w′‖

Fs is λ-SC Fs(w
′) ≥ Fs(w) +∇Fs(w)T (w′ −w) + λ

2
‖w−w′‖2 Since w is

minimiser of Fs the gradiant ∇Fs(w)T = 0 Therefore:

Fs(w
′)− Fs(w) ≥

1

2
‖w − w′‖2

λ

2
‖w − w′‖2 ≥ 2L

m
‖w − w′‖ ⇒ ‖w − w′‖ ≤ 4L

λm

`(ws, z
′
t)− `(w(t)

s , z
′
t) ≤

4L2

λm

We now know the stability of the SVM.
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Figure 1.1:
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