\documentclass[../main.tex]{subfiles} \begin{document} \chapter{Lecture 7 - 30-03-2020} Bounding statistical risk of a predictor\\\ Design a learning algorithm that predict with small statistical risk\\ $$ (D,\ell) \qquad \ell_d(h) = \barra{E}\left[ \, \ell (y), h(x) \, \right] $$ were $D$ is unknown $$ \ell(y, \hat{y}) \in [0,1] \quad \forall y, \hat{y} \in Y $$ We cannot compute statistical risk of all predictor.\\ We assume statistical loss is bounded so between 0 and 1. Not true for all losses (like logarithmic ).\\ Before design a learning algorithm with lowest risk, How can we estimate risk?\\ We can use test error $\rightarrow$ way to measure performances of a predictor h. We want to link test error and risk. \\ Test set $S' = \{ (x'_1, y'_1) ...(x'_n,y'_n) \}$ is a random sample from $D$ \\ How can we use this assumption?\\ Go back to the definition of test error\\ \\ \red{ Sample mean (IT: Media campionaria)}\\ $$ \hat{\ell}_s(h) = \frac{1}{n} \cdot \sum_{t=1}^{n} \ell (\hat{y}_t,h(x'_t)) $$ i can look at this as a random variable \col{$\ell(y'_t,h(x'_t))$}{Blue} \\ $$ \barra{E} \left[ \, \ell (y'_t, h(x'_t)) \right] = \ell_D(h) \longrightarrow \red{risk} $$\\ Using law of large number (LLN), i know that: $$ \hat{\ell} \longrightarrow \ell_D(h) \qquad as \quad n \rightarrow \infty $$ We cannot have a sample of $n = \infty$ so we will introduce another assumption: the \red{Chernoff-Hoffding bound} \section{Chernoff-Hoffding bound} $$ Z_1,...,Z_n \quad \textit{iid random variable} \qquad \barra{E}\left[Z_t \right] = u $$ all drawn for the same distribution \\ $$ t = 1, ..., n \qquad and \qquad 0 \leq Z_t \leq 1 \qquad t = 1,...,n \quad then \quad \forall \varepsilon > 0 $$\ $$ \barra{P} \left( \frac{1}{n} \cdot \sum_{t=1}^{n} z_t > u + \varepsilon \right) \leq e^{-2 \, \varepsilon^2 \, n} \qquad or \qquad \barra{P} \left( \frac{1}{n} \cdot \sum_{t=1}^{n} z_t < u + \varepsilon \right) \leq e^{-2 \, \varepsilon^2 \, n} $$ as sample size then $\downarrow$ $$ Z_t = \ell(Y'_t, h(X'_t)) \in \left[0,1\right] $$ $ (X'_1, Y'_1)...(X'_n, Y'_N)$ are $iid$ therefore, \\ $\ell\left(Y'_t, h\left(X'_t\right)\right)$ \quad $t = 1,...,n $ \quad are also $iid$ \\ We are using the bound of e to bound the deviation of this. \section{Union Bound} Union bound: a collection of event not necessary disjoint, then i know that probability of the union of this event is the at most the sum of the probabilities of individual events $$ A_1, ..., A_n \qquad \barra{P}\left( A_1 \cup ... \cup A_n \right) \leq \sum_{t=1}^{n} \barra{P} \left(A_t\right) $$ \begin{figure}[h] \centering \includegraphics[width=0.3\linewidth]{../img/lez7-img1.JPG} \caption{Example} %\label{fig:} \end{figure}\\ \red{that's why $ \leq$} \\\\ $$ \barra{P} \left(|\,\hat{\ell}_{s'} \left( h \right) - \ell_D\left( h \right) \, | \, > \varepsilon \right) $$ This is the probability according to the random draw of the test set.\\ \\ If test error differ from the risk by a number epsilon > 0. I want to bound the probability. This two thing will differ by more than epsilon. How can i use the Chernoff bound? $$ |\,\hat{\ell}_{s'} \left( h \right) - \ell_D\left( h \right) \, | \, > \varepsilon \quad \Rightarrow \quad \hat{\ell}_{s'}\left(h\right)-\ell_D\left(h\right) > \varepsilon \quad \vee \quad \hat{\ell}_D \left(h\right)-\ell_{s'}\left(h\right) > \varepsilon $$ $$ A, B \qquad A \Rightarrow B \qquad \barra{P} \left( A \right) < \barra{P} \left( B \right) $$ \begin{figure}[h] \centering \includegraphics[width=0.2\linewidth]{../img/lez7-img2.JPG} \caption{Example} %\label{fig:} \end{figure} $$ \barra{P} \left(|\,\hat{\ell}_{s'} \left( h \right) - \ell_D\left( h \right) \, | \, > \varepsilon \right) \leq \barra{P} \left( \,| \hat{\ell}_{s'}\left(h\right)-\ell_D\left(h\right) |\,\right) \quad \cup \quad \barra{P} \left( \,| \hat{\ell}_D \left(h\right)-\ell_{s'}\left(h\right) |\,\right) \leq $$\ $$ \leq \barra{P} \left( \hat{\ell}_{s'} > \ell_D\left(h\right) + \varepsilon \right) + \barra{P} \left( \hat{\ell}_{s'} < \ell_D\left(h\right) - \varepsilon \right) \quad \leq \quad 2 \cdot e^{-2 \, \varepsilon^2 \, n} \quad \Rightarrow \red{ \textit{we call it } \delta } $$ $$ \varepsilon = \sqrt[]{\frac{1}{2\cdot n}\ln \frac{2}{\delta }} $$ \col{The two events are disjoint}{Blue}\\\\ This mean that probability of this deviation is at least delta! $$ |\, \hat{\ell}_{s'}\left(h\right)-\ell_D\left(h\right) \, | \leq \sqrt[]{\frac{1}{2\cdot n} \ln \frac{2}{\delta}} \qquad \textit{with probability at least $1- \delta$} $$ \red{Test error of true estimate is going to be good for this value ($\delta$)} \\ \begin{figure}[h] \centering \includegraphics[width=0.5\linewidth]{../img/lez7-img3.JPG} \caption{Example} %\label{fig:} \end{figure}Confidence interval for risk at confidence level 1-delta.\\ I want to take $\delta = 0,05$ so that $1 - \delta$ is $95\%$. So test error is going to be an estimate of the true risk which is precise that depend on how big is the test set ($n$).\\ As n grows I can pin down the position of the true risk.\\\ This is how we can use probability to make sense of what we do in practise. If we take a predictor h we can compute the risk error estimate.\\ We can measure how accurate is our risk error estimate.\\ \textbf{Test error is an estimate of risk for a given predictor (h).} \\ $$ \barra{E} \left[ \, \ell\left( Y'_t, h\left(X'_t\right)\right) \, \right] = \ell_D \left( h\right) $$ \textbf{h is fixed with respect to S’} $\longrightarrow$ $h$ does not depend on the test set. So learning algorithm which produce h not have access to test set.\\ If we use test set we break down this equation. \\\\ Now, how to \textbf{build a good algorithm?}\\ Training set $S = \{ \left(x_1,y_1\right)...\left(x_m,y_m\right) \}$ random sample \\$ A $ \qquad $A\left(S\right) = h $ predictor output by $A$ given $S$ where A is \red{learning algorithm as function of traning set $S$.} \\ $\forall \, S$ \qquad $A\left(S\right) \in H \qquad h^* \in H $ \\ $$ \ell_D\left(h^*\right) = min \, \ell_D \left(h\right) \qquad \hat{\ell}_s\left(h^*\right) \textit{is closed to } \ell_D\left(h^*\right) \longrightarrow \textbf{it is going to have small error } $$ where $\ell_D\left(h^*\right)$ is the \red{training error of $h^*$} \begin{figure}[h] \centering \includegraphics[width=0.3\linewidth]{../img/lez7-img4.JPG} \caption{Example} %\label{fig:} \end{figure}\\ This guy $\ell_D\left(h^*\right)$ is closest to $0$ since optimum\\ \begin{figure}[h] \centering \includegraphics[width=0.3\linewidth]{../img/lez7-img5.JPG} \caption{Example} %\label{fig:} \end{figure}\\ In risk we get opt in $h^*$ but in empirical one we could get another $h’$ better than $h^+$ \\\\ In order to fix on a concrete algorithm we are going to take the empirical Islam minimiser (ERM) algorithm. \\ $A$ is $ERM$ on $H$ \qquad $\left(A\right) = \hat{h} = (\in) \, argmin \, \hat{\ell}_S\left(h\right) $ \\ Once I piack $\hat{h}$ i can look at training error of ERM \\ $$ \hat{\ell}_S\left(\hat{h}\right) of \hat{h} = A(S)$$ where $\hat{\ell}_S$ is the training error \\\\ Should $\hat{\ell}_S\left(\hat{h}\right)$ be close to $\ell_D\left(\hat{h}\right)$ ? \\ I’m interested in empirical error minimiser and do a trivial decomposition. \\\\ $$ \ell_d\left(\hat{h}\right) = \quad \ell_D\left(\hat{h}\right) - \ell_d\left(h^*\right) + \qquad \longrightarrow \red{\textbf{ Variance error $\Rightarrow$ Overfitting}} $$ $$ \qquad \quad +\, \ell_d\left(h^+\right) - \ell_d\left(f^*\right) + \qquad \longrightarrow \red{\textbf{ Bias error $\Rightarrow$ Underfitting}} $$ $$ \qquad \qquad \quad + \, \ell_D\left(f^*\right)\qquad \qquad \quad \longrightarrow \red{\textbf{ Bayes risk $\Rightarrow$ Unavoidable}} $$\\ Even the best predictor is going to suffer that\\ $$ f^* \textit{ is \textbf{Bayes Optimal} for $(D,\ell)$ } $$ $$\forall \, h \qquad \ell_D\left(h\right) \geq \ell_D\left(f^*\right) $$ If $f^* \not\in H$ then $\ell_D\left(h^*\right) > \ell_D (f^*) $ \\\\ If i pick $h^*$ I will pick some error because we are not close enough to the risk.\\ We called this component \red{\textbf{bias error}}.\\ Bias error is responsible for underfitting (when training and test are close to each but they are both high :( )\\ \red{\textbf{Variance error}} over fitting \\ \begin{figure}[h] \centering \includegraphics[width=0.5\linewidth]{../img/lez7-img6.JPG} \caption{Draw of how $\hat{h}$, $h^*$ and $f^*$ are represented} %\label{fig:} \end{figure}\\ Variance is a random quantity and we want to study this. We can always get risk from training error. \\\\ \section{Studying overfitting of a ERM} We can bound it with probability.\\ \bred{I add and subtract trivial traning error $\hat{\ell}_S\left(h\right)$} $$ \ell_D \left(\hat{h}\right) -\ell_d \left(h^*\right) \quad = \quad \ell_D \left(\hat{h}\right) - \hat{\ell}_S\left( h \right) + \hat{\ell}_S \left( \hat{h} \right) - \ell_D\left( h^* \right) \leq $$ $$ \leq \, \ell_D \left(\hat{h}\right) - \hat{\ell}_S\left( \hat{h} \right) + \hat{\ell}_S \left( h^* \right) - \ell_D\left( h^* \right) \leq \, $$ $$ \leq \, | \, \ell_D\left(\hat{h}\right) - \hat{\ell}_S\left(h\right) \, | + | \, \hat{\ell}_S\left(h^+\right) - \ell_D\left(h^*\right) \, |\, \leq $$ $$ \leq \quad 2 \cdot max \, |\hat{\ell}_S\left(h\right) - \ell_D\left(h\right) | $$ (no probability here)\\ \textbf{Any given $\hat{h}$ minising $\hat{\ell}_S\left(h\right)$} \\\\ Now assume we have a large deviation \\ $$ \textit{Assume \quad } \ell_D\left(\hat{h}\right) - \ell_D \left(h^* \right) > \varepsilon \qquad \Rightarrow \qquad max \, | \, \hat{\ell}_S\left(h\right) - \ell_D \left(h\right) \, | > \frac{\varepsilon}{2} $$ \\ We know $\ell_d\left(\hat{h}\right) - \ell_D\left(h^*\right) \quad \leq \quad 2 \cdot max \,|\, \hat{\ell}_S \left(h\right) - \ell_D\left(h\right) \, |$ \quad $\Rightarrow$ \\ $$ \Rightarrow \quad \exists h \in H \qquad | \, \hat{\ell}_S\left(h\right) - \ell_D\left(h \right) \, | \, > \frac{3}{2} \qquad \Rightarrow $$ with $|H| < \infty$ $$ \Rightarrow U \left( \, | \, \hat{\ell}_S\left(h\right) - \ell_D \left(h\right) \, | \, \right) > \frac{3}{2} $$ \\ $$ \barra{P} \left( \ell_D \left(\hat{h}\right) - \ell_D \left( h^* \right) > \varepsilon \right) \quad \leq \quad \barra{P} \left( U \left( \, | \, \hat{\ell}_S\left(h\right) - \ell_D \left(h\right) \, | \, \right) > \frac{3}{2} \right) \quad \leq $$ $$ \red{\leq} \quad \sum_{h \in H}{} \, \barra{P} \left( \, | \, \hat{\ell}_S\left(h\right) - \ell_D \left(h\right) \, | \, > \frac{3}{2} \right) \qquad \leq \qquad \sum_{h \in H}{} 2 \cdot e^{-2 \, \left(\frac{\varepsilon}{2}\right)^2 \, m} \qquad \leq $$ \bred{Union Bound } \blue{Chernoff. Hoffding bound ($\barra{P} \left( ... \right) $)} $$ \leq \quad 2 \cdot |H| e^{- \, \frac{\varepsilon^2}{2} \, m} $$ \\ Solve for $\varepsilon$ \qquad $ 2 \cdot |H| e^{- \, \frac{\varepsilon^2}{2} \, m} \quad = \quad \delta $ $$ \textit{ Solve for } \varepsilon \longrightarrow \quad \varepsilon = \sqrt[]{\frac{2}{m} \cdot \ln \cdot \frac{2|H|}{\delta}} $$ $$ \ell_D\left(\hat{h}\right) - \ell_D \left( h^* \right) \quad\leq \quad \sqrt[]{\frac{2}{m} \cdot \ln \cdot \frac{2|H|}{\delta}} $$ \\ With probability at least $1 - \delta$ with respect to random draw of $S$.\\ We want $m >> ln |H|$ \quad $\longrightarrow$ in order to avoid overfitting \\ \end{document}