\babel@toc {english}{} \contentsline {chapter}{\numberline {1}Lecture 1 - 09-03-2020}{4}% \contentsline {section}{\numberline {1.1}Introduction of the course}{4}% \contentsline {section}{\numberline {1.2}Examples}{4}% \contentsline {subsection}{\numberline {1.2.1}Spam filtering}{7}% \contentsline {chapter}{\numberline {2}Lecture 2 - 07-04-2020}{8}% \contentsline {section}{\numberline {2.1}Argomento}{8}% \contentsline {section}{\numberline {2.2}Loss}{8}% \contentsline {subsection}{\numberline {2.2.1}Absolute Loss}{8}% \contentsline {subsection}{\numberline {2.2.2}Square Loss}{9}% \contentsline {subsection}{\numberline {2.2.3}Example of information of square loss}{9}% \contentsline {subsection}{\numberline {2.2.4}labels and losses}{10}% \contentsline {subsection}{\numberline {2.2.5}Example TF(idf) documents encoding}{12}% \contentsline {chapter}{\numberline {3}Lecture 3 - 07-04-2020}{14}% \contentsline {section}{\numberline {3.1}Overfitting}{16}% \contentsline {subsection}{\numberline {3.1.1}Noise in the data}{16}% \contentsline {section}{\numberline {3.2}Underfitting}{17}% \contentsline {section}{\numberline {3.3}Nearest neighbour}{18}% \contentsline {chapter}{\numberline {4}Lecture 4 - 07-04-2020}{20}% \contentsline {section}{\numberline {4.1}Computing $h_{NN}$}{20}% \contentsline {section}{\numberline {4.2}Tree Predictor}{21}% \contentsline {chapter}{\numberline {5}Lecture 5 - 07-04-2020}{24}% \contentsline {section}{\numberline {5.1}Tree Classifier}{24}% \contentsline {section}{\numberline {5.2}Jensen’s inequality}{25}% \contentsline {section}{\numberline {5.3}Tree Predictor}{27}% \contentsline {section}{\numberline {5.4}Statistical model for Machine Learning}{28}% \contentsline {chapter}{\numberline {6}Lecture 6 - 07-04-2020}{30}% \contentsline {section}{\numberline {6.1}Bayes Optimal Predictor}{30}% \contentsline {subsection}{\numberline {6.1.1}Square Loss}{31}% \contentsline {subsection}{\numberline {6.1.2}Zero-one loss for binary classification}{32}% \contentsline {section}{\numberline {6.2}Bayes Risk}{34}% \contentsline {chapter}{\numberline {7}Lecture 7 - 07-04-2020}{35}% \contentsline {section}{\numberline {7.1}Chernoff-Hoffding bound}{35}% \contentsline {section}{\numberline {7.2}Union Bound}{36}% \contentsline {section}{\numberline {7.3}Studying overfitting of a ERM}{40}% \contentsline {chapter}{\numberline {8}Lecture 8 - 07-04-2020}{42}% \contentsline {section}{\numberline {8.1}The problem of estimating risk in practise}{43}% \contentsline {section}{\numberline {8.2}Cross-validation}{45}% \contentsline {section}{\numberline {8.3}Nested cross validation}{47}% \contentsline {chapter}{\numberline {9}Lecture 9 - 07-04-2020}{48}% \contentsline {section}{\numberline {9.1}Tree predictors}{48}% \contentsline {subsection}{\numberline {9.1.1}Catalan Number}{50}% \contentsline {chapter}{\numberline {10}Lecture 10 - 07-04-2020}{54}% \contentsline {section}{\numberline {10.1}TO BE DEFINE}{54}% \contentsline {section}{\numberline {10.2}MANCANO 20 MINUTI DI LEZIONE}{54}% \contentsline {section}{\numberline {10.3}Compare risk for zero-one loss}{56}% \contentsline {chapter}{\numberline {11}Lecture 11 - 20-04-2020}{58}% \contentsline {section}{\numberline {11.1}Analysis of $K_{NN}$}{58}% \contentsline {subsection}{\numberline {11.1.1}Study of $K_{NN}$}{61}% \contentsline {subsection}{\numberline {11.1.2}study of trees}{62}% \contentsline {section}{\numberline {11.2}Non-parametric Algorithms}{63}% \contentsline {subsection}{\numberline {11.2.1}Example of parametric algorithms}{64}% \contentsline {chapter}{\numberline {12}Lecture 12 - 21-04-2020}{65}% \contentsline {section}{\numberline {12.1}Non parametrics algorithms}{65}%