
5 Eigenvalues and
Eigenvectors

INTRODUCTORY EXAMPLE

Dynamical Systems and Spotted Owls
In 1990, the northern spotted owl became the center of
a nationwide controversy over the use and misuse of the
majestic forests in the Pacific Northwest. Environmental-
ists convinced the federal government that the owl was
threatened with extinction if logging continued in the old-
growth forests (with trees more than 200 years old), where
the owls prefer to live. The timber industry, anticipating
the loss of 30,000 to 100,000 jobs as a result of new
government restrictions on logging, argued that the owl
should not be classified as a “threatened species” and cited
a number of published scientific reports to support its case.1

Caught in the crossfire of the two lobbying groups,
mathematical ecologists intensified their drive to under-
stand the population dynamics of the spotted owl. The life
cycle of a spotted owl divides naturally into three stages:
juvenile (up to 1 year old), subadult (1 to 2 years), and
adult (older than 2 years). The owls mate for life during
the subadult and adult stages, begin to breed as adults,
and live for up to 20 years. Each owl pair requires about
1000 hectares (4 square miles) for its own home territory.
A critical time in the life cycle is when the juveniles leave
the nest. To survive and become a subadult, a juvenile must
successfully find a new home range (and usually a mate).

1 “The Great Spotted Owl War,” Reader’s Digest, November 1992,
pp. 91–95.

A first step in studying the population dynamics is to
model the population at yearly intervals, at times denoted
by k D 0; 1; 2; : : : : Usually, one assumes that there is a 1:1
ratio of males to females in each life stage and counts only
the females. The population at year k can be described
by a vector xk D .jk ; sk ; ak/, where jk , sk , and ak are the
numbers of females in the juvenile, subadult, and adult
stages, respectively.

Using actual field data from demographic studies,
R. Lamberson and co-workers considered the following
stage-matrix model:2

24 jkC1

skC1

akC1

35 D

24 0 0 :33

:18 0 0

0 :71 :94

3524 jk

sk

ak

35
Here the number of new juvenile females in year k C 1

is .33 times the number of adult females in year k (based
on the average birth rate per owl pair). Also, 18% of the
juveniles survive to become subadults, and 71% of the
subadults and 94% of the adults survive to be counted as
adults.

The stage-matrix model is a difference equation of the
form xkC1 D Axk . Such an equation is often called a

2 R. H. Lamberson, R. McKelvey, B. R. Noon, and C. Voss, “A Dynamic
Analysis of the Viability of the Northern Spotted Owl in a Fragmented
Forest Environment,” Conservation Biology 6 (1992), 505–512. Also, a
private communication from Professor Lamberson, 1993.
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268 CHAPTER 5 Eigenvalues and Eigenvectors

dynamical system (or a discrete linear dynamical
system) because it describes the changes in a system as
time passes.

The 18% juvenile survival rate in the Lamberson stage
matrix is the entry affected most by the amount of old-
growth forest available. Actually, 60% of the juveniles
normally survive to leave the nest, but in the Willow
Creek region of California studied by Lamberson and his
colleagues, only 30% of the juveniles that left the nest were
able to find new home ranges. The rest perished during the
search process.

A significant reason for the failure of owls to find new
home ranges is the increasing fragmentation of old-growth
timber stands due to clear-cutting of scattered areas on
the old-growth land. When an owl leaves the protective
canopy of the forest and crosses a clear-cut area, the risk of
attack by predators increases dramatically. Section 5.6 will
show that the model described above predicts the eventual
demise of the spotted owl, but that if 50% of the juveniles
who survive to leave the nest also find new home ranges,
then the owl population will thrive.

WEB

The goal of this chapter is to dissect the action of a linear transformation x 7!Ax into el-
ements that are easily visualized. Except for a brief digression in Section 5.4, all matrices
in the chapter are square. The main applications described here are to discrete dynamical
systems, including the spotted owls discussed above. However, the basic concepts—
eigenvectors and eigenvalues—are useful throughout pure and applied mathematics,
and they appear in settings far more general than we consider here. Eigenvalues are also
used to study differential equations and continuous dynamical systems, they provide
critical information in engineering design, and they arise naturally in fields such as
physics and chemistry.

5.1 EIGENVECTORS AND EIGENVALUES

Although a transformation x 7!Ax may move vectors in a variety of directions, it often
happens that there are special vectors on which the action of A is quite simple.

EXAMPLE 1 Let A D

�
3 �2

1 0

�
, u D

�
�1

1

�
, and v D

�
2

1

�
. The images of u and

v under multiplication by A are shown in Figure 1. In fact, Av is just 2v. So A only
“stretches,” or dilates, v.

v

x1

x2

Av

Au

v
u 1

1

FIGURE 1 Effects of multiplication by A.

As another example, readers of Section 4.9 will recall that if A is a stochastic matrix,
then the steady-state vector q for A satisfies the equation Ax D x. That is, Aq D 1 � q.
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5.1 Eigenvectors and Eigenvalues 269

This section studies equations such as
Ax D 2x or Ax D �4x

where special vectors are transformed by A into scalar multiples of themselves.

DEF IN I T I ON An eigenvector of an n � n matrix A is a nonzero vector x such that Ax D �x
for some scalar �. A scalar � is called an eigenvalue of A if there is a nontrivial
solution x of Ax D �x; such an x is called an eigenvector corresponding to �.1

It is easy to determine if a given vector is an eigenvector of a matrix. It is also easy
to decide if a specified scalar is an eigenvalue.

EXAMPLE 2 Let A D

�
1 6

5 2

�
, u D

�
6

�5

�
, and v D

�
3

�2

�
. Are u and v eigen-

Au

Av

v

u

20

–30 30

–10

–20

x1

x2

Au D �4u, but Av ¤ �v .

vectors of A?
SOLUTION

Au D

�
1 6

5 2

��
6

�5

�
D

�
�24

20

�
D �4

�
6

�5

�
D �4u

Av D

�
1 6

5 2

��
3

�2

�
D

�
�9

11

�
¤ �

�
3

�2

�
Thus u is an eigenvector corresponding to an eigenvalue .�4/, but v is not an eigenvector
of A, because Av is not a multiple of v.

EXAMPLE 3 Show that 7 is an eigenvalue of matrix A in Example 2, and find the
corresponding eigenvectors.
SOLUTION The scalar 7 is an eigenvalue of A if and only if the equation

Ax D 7x (1)
has a nontrivial solution. But (1) is equivalent to Ax � 7x D 0, or

.A � 7I /x D 0 (2)
To solve this homogeneous equation, form the matrix

A � 7I D

�
1 6

5 2

�
�

�
7 0

0 7

�
D

�
�6 6

5 �5

�
The columns of A � 7I are obviously linearly dependent, so (2) has nontrivial solu-
tions. Thus 7 is an eigenvalue of A. To find the corresponding eigenvectors, use row
operations: �

�6 6 0

5 �5 0

�
�

�
1 �1 0

0 0 0

�
The general solution has the form x2

�
1

1

�
. Each vector of this form with x2 ¤ 0 is an

eigenvector corresponding to � D 7.

1 Note that an eigenvector must be nonzero, by definition, but an eigenvalue may be zero. The case in which
the number 0 is an eigenvalue is discussed after Example 5.
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270 CHAPTER 5 Eigenvalues and Eigenvectors

Warning: Although row reduction was used in Example 3 to find eigenvectors, it
cannot be used to find eigenvalues. An echelon form of a matrix A usually does not
display the eigenvalues of A.

The equivalence of equations (1) and (2) obviously holds for any � in place of
� D 7. Thus � is an eigenvalue of an n � n matrix A if and only if the equation

.A � �I/x D 0 (3)
has a nontrivial solution. The set of all solutions of (3) is just the null space of the matrix
A � �I . So this set is a subspace of Rn and is called the eigenspace of A corresponding
to �. The eigenspace consists of the zero vector and all the eigenvectors corresponding
to �.

Example 3 shows that for matrix A in Example 2, the eigenspace corresponding to
� D 7 consists of all multiples of .1; 1/, which is the line through .1; 1/ and the origin.
From Example 2, you can check that the eigenspace corresponding to � D �4 is the
line through .6; �5/. These eigenspaces are shown in Figure 2, along with eigenvectors
.1; 1/ and .3=2; �5=4/ and the geometric action of the transformation x 7!Ax on each
eigenspace.

x1

x2

Eigenspace
for λ = 7

Multiplication
by 7

Eigenspace
for λ = –4

Multiplication
by –4

2

2

(6, –5)

FIGURE 2 Eigenspaces for � D �4 and � D 7.

EXAMPLE 4 Let A D

24 4 �1 6

2 1 6

2 �1 8

35. An eigenvalue of A is 2. Find a basis for

the corresponding eigenspace.
SOLUTION Form

A � 2I D

24 4 �1 6

2 1 6

2 �1 8

35 �

24 2 0 0

0 2 0

0 0 2

35 D

24 2 �1 6

2 �1 6

2 �1 6

35
and row reduce the augmented matrix for .A � 2I /x D 0:24 2 �1 6 0

2 �1 6 0

2 �1 6 0

35 �

24 2 �1 6 0

0 0 0 0

0 0 0 0

35
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5.1 Eigenvectors and Eigenvalues 271

At this point, it is clear that 2 is indeed an eigenvalue of A because the equation
.A � 2I /x D 0 has free variables. The general solution is24 x1

x2

x3

35 D x2

24 1=2

1

0

35C x3

24�3

0

1

35; x2 and x3 free

The eigenspace, shown in Figure 3, is a two-dimensional subspace of R3. A basis is8<:
24 1

2

0

35;

24�3

0

1

359=;

Eigenspace for � � 2

Multiplication by A

x2

x1

x3

Eigenspace for � � 2

x2

x1

x3

FIGURE 3 A acts as a dilation on the eigenspace.

NUMER ICAL NOTE

Example 4 shows a good method for manual computation of eigenvectors in
simple cases when an eigenvalue is known. Using a matrix program and row
reduction to find an eigenspace (for a specified eigenvalue) usually works, too,
but this is not entirely reliable. Roundoff error can lead occasionally to a reduced
echelon form with the wrong number of pivots. The best computer programs
compute approximations for eigenvalues and eigenvectors simultaneously, to
any desired degree of accuracy, for matrices that are not too large. The size
of matrices that can be analyzed increases each year as computing power and
software improve.

The following theorem describes one of the few special cases in which eigenvalues
can be found precisely. Calculation of eigenvalues will also be discussed in Section 5.2.

THEOREM 1 The eigenvalues of a triangular matrix are the entries on its main diagonal.

PROOF For simplicity, consider the 3 � 3 case. If A is upper triangular, then A � �I

has the form

A � �I D

24 a11 a12 a13

0 a22 a23

0 0 a33

35 �

24 � 0 0

0 � 0

0 0 �

35
D

24 a11 � � a12 a13

0 a22 � � a23

0 0 a33 � �

35
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272 CHAPTER 5 Eigenvalues and Eigenvectors

The scalar � is an eigenvalue of A if and only if the equation .A � �I/x D 0 has a
nontrivial solution, that is, if and only if the equation has a free variable. Because of the
zero entries in A � �I , it is easy to see that .A � �I/x D 0 has a free variable if and
only if at least one of the entries on the diagonal of A � �I is zero. This happens if and
only if � equals one of the entries a11, a22, a33 in A. For the case in which A is lower
triangular, see Exercise 28.

EXAMPLE 5 Let A D

24 3 6 �8

0 0 6

0 0 2

35 and B D

24 4 0 0

�2 1 0

5 3 4

35. The eigenval-

ues of A are 3, 0, and 2. The eigenvalues of B are 4 and 1.

What does it mean for a matrix A to have an eigenvalue of 0, such as in Example 5?
This happens if and only if the equation

Ax D 0x (4)

has a nontrivial solution. But (4) is equivalent to Ax D 0, which has a nontrivial solution
if and only if A is not invertible. Thus 0 is an eigenvalue of A if and only if A is not
invertible. This fact will be added to the Invertible Matrix Theorem in Section 5.2.

The following important theorem will be needed later. Its proof illustrates a typical
calculation with eigenvectors. One way to prove the statement “If P then Q” is to show
that P and the negation of Q leads to a contradiction. This strategy is used in the proof
of the theorem.

THEOREM 2 If v1; : : : ; vr are eigenvectors that correspond to distinct eigenvalues �1; : : : ; �r

of an n � n matrix A, then the set fv1; : : : ; vrg is linearly independent.

PROOF Suppose fv1; : : : ; vrg is linearly dependent. Since v1 is nonzero, Theorem 7 in
Section 1.7 says that one of the vectors in the set is a linear combination of the preceding
vectors. Let p be the least index such that vpC1 is a linear combination of the preceding
(linearly independent) vectors. Then there exist scalars c1; : : : ; cp such that

c1v1 C � � � C cpvp D vpC1 (5)

Multiplying both sides of (5) by A and using the fact that Avk D �kvk for each k, we
obtain

c1Av1 C � � � C cpAvp D AvpC1

c1�1v1 C � � � C cp�pvp D �pC1vpC1 (6)

Multiplying both sides of (5) by �pC1 and subtracting the result from (6), we have

c1.�1 � �pC1/v1 C � � � C cp.�p � �pC1/vp D 0 (7)

Since fv1; : : : ; vpg is linearly independent, the weights in (7) are all zero. But none of
the factors �i � �pC1 are zero, because the eigenvalues are distinct. Hence ci D 0 for
i D 1; : : : ; p. But then (5) says that vpC1 D 0, which is impossible. Hence fv1; : : : ; vrg

cannot be linearly dependent and therefore must be linearly independent.
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5.1 Eigenvectors and Eigenvalues 273

Eigenvectors and Difference Equations
This section concludes by showing how to construct solutions of the first-order differ-
ence equation discussed in the chapter introductory example:

xkC1 D Axk .k D 0; 1; 2; : : :/ (8)
If A is an n � n matrix, then (8) is a recursive description of a sequence fxkg in Rn.
A solution of (8) is an explicit description of fxkg whose formula for each xk does not
depend directly on A or on the preceding terms in the sequence other than the initial
term x0.

The simplest way to build a solution of (8) is to take an eigenvector x0 and its
corresponding eigenvalue � and let

xk D �kx0 .k D 1; 2; : : :/ (9)
This sequence is a solution because

Axk D A.�kx0/ D �k.Ax0/ D �k.�x0/ D �kC1x0 D xkC1

Linear combinations of solutions in the form of equation (9) are solutions, too! See
Exercise 33.

PRACTICE PROBLEMS

1. Is 5 an eigenvalue of A D

24 6 �3 1

3 0 5

2 2 6

35?

2. If x is an eigenvector of A corresponding to �, what is A3x?
3. Suppose that b1 and b2 are eigenvectors corresponding to distinct eigenvalues �1 and

�2, respectively, and suppose that b3 and b4 are linearly independent eigenvectors
corresponding to a third distinct eigenvalue �3. Does it necessarily follow that
fb1; b2; b3; b4g is a linearly independent set? [Hint: Consider the equation c1b1 C

c2b2 C .c3b3 C c4b4/ D 0.]
4. If A is an n � n matrix and � is an eigenvalue of A, show that 2� is an eigenvalue

of 2A.

5.1 EXERCISES
1. Is � D 2 an eigenvalue of

�
3 2

3 8

�
? Why or why not?

2. Is � D �2 an eigenvalue of
�

7 3

3 �1

�
? Why or why not?

3. Is
�

1

4

�
an eigenvector of

�
�3 1

�3 8

�
? If so, find the eigen-

value.

4. Is
�

�1 C
p

2

1

�
an eigenvector of

�
2 1

1 4

�
? If so, find the

eigenvalue.

5. Is
24 4

�3

1

35 an eigenvector of
24 3 7 9

�4 �5 1

2 4 4

35? If so, find

the eigenvalue.

6. Is
24 1

�2

1

35 an eigenvector of
24 3 6 7

3 3 7

5 6 5

35? If so, find the

eigenvalue.

7. Is � D 4 an eigenvalue of
24 3 0 �1

2 3 1

�3 4 5

35? If so, find one

corresponding eigenvector.

8. Is � D 3 an eigenvalue of
24 1 2 2

3 �2 1

0 1 1

35? If so, find one

corresponding eigenvector.
In Exercises 9–16, find a basis for the eigenspace corresponding
to each listed eigenvalue.
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274 CHAPTER 5 Eigenvalues and Eigenvectors

9. A D

�
5 0

2 1

�
, � D 1; 5

10. A D

�
10 �9

4 �2

�
, � D 4

11. A D

�
4 �2

�3 9

�
, � D 10

12. A D

�
7 4

�3 �1

�
, � D 1; 5

13. A D

24 4 0 1

�2 1 0

�2 0 1

35, � D 1; 2; 3

14. A D

24 1 0 �1

1 �3 0

4 �13 1

35, � D �2

15. A D

24 4 2 3

�1 1 �3

2 4 9

35, � D 3

16. A D

2664
3 0 2 0

1 3 1 0

0 1 1 0

0 0 0 4

3775, � D 4

Find the eigenvalues of the matrices in Exercises 17 and 18.

17.
24 0 0 0

0 2 5

0 0 �1

35 18.
24 4 0 0

0 0 0

1 0 �3

35

19. For A D

24 1 2 3

1 2 3

1 2 3

35, find one eigenvalue, with no cal-

culation. Justify your answer.

20. Without calculation, find one eigenvalue and two linearly

independent eigenvectors of A D

24 5 5 5

5 5 5

5 5 5

35. Justify

your answer.

In Exercises 21 and 22, A is an n � n matrix. Mark each statement
True or False. Justify each answer.

21. a. If Ax D �x for some vector x, then � is an eigenvalue of
A.

b. A matrix A is not invertible if and only if 0 is an eigen-
value of A.

c. A number c is an eigenvalue of A if and only if the
equation .A � cI /x D 0 has a nontrivial solution.

d. Finding an eigenvector of A may be difficult, but check-
ing whether a given vector is in fact an eigenvector is
easy.

e. To find the eigenvalues of A, reduce A to echelon form.

22. a. If Ax D �x for some scalar �, then x is an eigenvector
of A.

b. If v1 and v2 are linearly independent eigenvectors, then
they correspond to distinct eigenvalues.

c. A steady-state vector for a stochastic matrix is actually an
eigenvector.

d. The eigenvalues of a matrix are on its main diagonal.
e. An eigenspace of A is a null space of a certain matrix.

23. Explain why a 2 � 2 matrix can have at most two distinct
eigenvalues. Explain why an n � n matrix can have at most
n distinct eigenvalues.

24. Construct an example of a 2 � 2 matrix with only one distinct
eigenvalue.

25. Let � be an eigenvalue of an invertible matrix A. Show that
��1 is an eigenvalue of A�1. [Hint: Suppose a nonzero x
satisfies Ax D �x.]

26. Show that if A2 is the zero matrix, then the only eigenvalue
of A is 0.

27. Show that � is an eigenvalue of A if and only if � is an
eigenvalue of AT . [Hint: Find out how A � �I and AT � �I

are related.]
28. Use Exercise 27 to complete the proof of Theorem 1 for the

case when A is lower triangular.
29. Consider an n � n matrix A with the property that the row

sums all equal the same number s. Show that s is an eigen-
value of A. [Hint: Find an eigenvector.]

30. Consider an n � n matrix A with the property that the col-
umn sums all equal the same number s. Show that s is an
eigenvalue of A. [Hint: Use Exercises 27 and 29.]

In Exercises 31 and 32, let A be the matrix of the linear transfor-
mation T . Without writing A, find an eigenvalue of A and describe
the eigenspace.
31. T is the transformation on R2 that reflects points across some

line through the origin.
32. T is the transformation on R3 that rotates points about some

line through the origin.
33. Let u and v be eigenvectors of a matrix A, with corresponding

eigenvalues � and �, and let c1 and c2 be scalars. Define
xk D c1�

ku C c2�
kv .k D 0; 1; 2; : : :/

a. What is xkC1, by definition?
b. Compute Axk from the formula for xk , and show that

Axk D xkC1. This calculation will prove that the se-
quence fxkg defined above satisfies the difference equa-
tion xkC1 D Axk .k D 0; 1; 2; : : :/.
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5.1 Eigenvectors and Eigenvalues 275

34. Describe how you might try to build a solution of a difference
equation xkC1 D Axk .k D 0; 1; 2; : : :/ if you were given the
initial x0 and this vector did not happen to be an eigenvector
of A. [Hint: How might you relate x0 to eigenvectors of A?]

35. Let u and v be the vectors shown in the figure, and suppose u
and v are eigenvectors of a 2 � 2 matrix A that correspond
to eigenvalues 2 and 3, respectively. Let T W R2 ! R2 be
the linear transformation given by T .x/ D Ax for each x in
R2, and let w D u C v. Make a copy of the figure, and on
the same coordinate system, carefully plot the vectors T .u/,
T .v/, and T .w/.

x1

x2

v

u

36. Repeat Exercise 35, assuming u and v are eigenvectors of A

that correspond to eigenvalues �1 and 3, respectively.

[M] In Exercises 37–40, use a matrix program to find the eigen-
values of the matrix. Then use the method of Example 4 with a
row reduction routine to produce a basis for each eigenspace.

37.
24 8 �10 �5

2 17 2

�9 �18 4

35

38.

2664
9 �4 �2 �4

�56 32 �28 44

�14 �14 6 �14

42 �33 21 �45

3775

39.

266664
4 �9 �7 8 2

�7 �9 0 7 14

5 10 5 �5 �10

�2 3 7 0 4

�3 �13 �7 10 11

377775

40.

266664
�4 �4 20 �8 �1

14 12 46 18 2

6 4 �18 8 1

11 7 �37 17 2

18 12 �60 24 5

377775

SOLUTIONS TO PRACTICE PROBLEMS

1. The number 5 is an eigenvalue of A if and only if the equation .A � 5I /x D 0 has a
nontrivial solution. Form

A � 5I D

24 6 �3 1

3 0 5

2 2 6

35 �

24 5 0 0

0 5 0

0 0 5

35 D

24 1 �3 1

3 �5 5

2 2 1

35
and row reduce the augmented matrix:24 1 �3 1 0

3 �5 5 0

2 2 1 0

35 �

24 1 �3 1 0

0 4 2 0

0 8 �1 0

35 �

24 1 �3 1 0

0 4 2 0

0 0 �5 0

35
At this point, it is clear that the homogeneous system has no free variables. Thus
A � 5I is an invertible matrix, which means that 5 is not an eigenvalue of A.

2. If x is an eigenvector of A corresponding to �, then Ax D �x and so
A2x D A.�x/ D �Ax D �2x

Again, A3x D A.A2x/ D A.�2x/ D �2Ax D �3x. The general pattern, Akx D �kx,
is proved by induction.

3. Yes. Suppose c1b1 C c2b2 C .c3b3 C c4b4/ D 0. Since any linear combination of
eigenvectors corresponding to the same eigenvalue is in the eigenspace for that
eigenvalue, c3b3 C c4b4 is either 0 or an eigenvector for �3. If c3b3 C c4b4 were
an eigenvector for �3, then by Theorem 2, fb1; b2; c3b3 C c4b4g would be a linearly
independent set, which would force c1 D c2 D 0 and c3b3 C c4b4 D 0, contradicting
that c3b3 C c4b4 is an eigenvector. Thus c3b3 C c4b4 must be 0, implying that
c1b1 C c2b2 D 0 also. By Theorem 2, fb1; b2g is a linearly independent set so
c1 D c2 D 0. Moreover, fb3; b4g is a linearly independent set so c3 D c4 D 0. Since
all of the coefficients c1, c2, c3, and c4 must be zero, it follows that fb1, b2, b3, b4g

is a linearly independent set.
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276 CHAPTER 5 Eigenvalues and Eigenvectors

4. Since � is an eigenvalue of A, there is a nonzero vector x in Rn such that Ax D �x.
Multiplying both sides of this equation by 2 results in the equation 2.Ax/ D 2.�x/.
Thus .2A/x D .2�/x and hence 2� is an eigenvalue of 2A.

5.2 THE CHARACTERISTIC EQUATION

Useful information about the eigenvalues of a square matrix A is encoded in a special
scalar equation called the characteristic equation of A. A simple example will lead to
the general case.

EXAMPLE 1 Find the eigenvalues of A D

�
2 3

3 �6

�
.

SOLUTION We must find all scalars � such that the matrix equation
.A � �I/x D 0

has a nontrivial solution. By the Invertible Matrix Theorem in Section 2.3, this problem
is equivalent to finding all � such that the matrix A � �I is not invertible, where

A � �I D

�
2 3

3 �6

�
�

�
� 0

0 �

�
D

�
2 � � 3

3 �6 � �

�
By Theorem 4 in Section 2.2, this matrix fails to be invertible precisely when its

determinant is zero. So the eigenvalues of A are the solutions of the equation

det.A � �I/ D det
�

2 � � 3

3 �6 � �

�
D 0

Recall that
det

�
a b

c d

�
D ad � bc

So
det.A � �I/ D .2 � �/.�6 � �/ � .3/.3/

D �12 C 6� � 2� C �2
� 9

D �2
C 4� � 21

D .� � 3/.� C 7/

If det.A � �I/ D 0, then � D 3 or � D �7. So the eigenvalues of A are 3 and �7.
The determinant in Example 1 transformed the matrix equation .A � �I/x D 0,

which involves two unknowns .� and x/, into the scalar equation �2 C 4� � 21 D 0,
which involves only one unknown. The same idea works for n � n matrices. However,
before turning to larger matrices, we summarize the properties of determinants needed
to study eigenvalues.

Determinants
Let A be an n � n matrix, let U be any echelon form obtained from A by row
replacements and row interchanges (without scaling), and let r be the number of such
row interchanges. Then the determinant of A, written as det A, is .�1/r times the
product of the diagonal entries u11; : : : ; unn in U . If A is invertible, then u11; : : : ; unn
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are all pivots (because A � In and the ui i have not been scaled to 1’s). Otherwise, at
least unn is zero, and the product u11 � � � unn is zero. Thus1

det A D

8̂<̂
:.�1/r �

 
product of
pivots in U

!
; when A is invertible

0; when A is not invertible
(1)

EXAMPLE 2 Compute det A for A D

24 1 5 0

2 4 �1

0 �2 0

35.

SOLUTION The following row reduction uses one row interchange:

A �

24 1 5 0

0 �6 �1

0 �2 0

35 �

24 1 5 0

0 �2 0

0 �6 �1

35 �

24 1 5 0

0 �2 0

0 0 �1

35 D U1

So det A equals .�1/1.1/.�2/.�1/ D �2. The following alternative row reduction
avoids the row interchange and produces a different echelon form. The last step adds
�1=3 times row 2 to row 3:

A �

24 1 5 0

0 �6 �1

0 �2 0

35 �

24 1 5 0

0 �6 �1

0 0 1=3

35 D U2

This time det A is .�1/0.1/.�6/.1=3/ D �2, the same as before.

Formula (1) for the determinant shows that A is invertible if and only if det A is
nonzero. This fact, and the characterization of invertibility found in Section 5.1, can be
added to the Invertible Matrix Theorem.

THEOREM The Invertible Matrix Theorem (continued)

Let A be an n � n matrix. Then A is invertible if and only if:
s. The number 0 is not an eigenvalue of A.
t. The determinant of A is not zero.

When A is a 3 � 3 matrix, j det Aj turns out to be the volume of the parallelepiped
determined by the columns a1, a2, and a3 of A, as in Figure 1. (See Section 3.3 for
details.) This volume is nonzero if and only if the vectors a1, a2, and a3 are linearly
independent, in which case the matrix A is invertible. (If the vectors are nonzero and
linearly dependent, they lie in a plane or along a line.)

The next theorem lists facts needed from Sections 3.1 and 3.2. Part (a) is included
here for convenient reference.

x1

x2

x3

a2

a3
a1

FIGURE 1

1 Formula (1) was derived in Section 3.2. Readers who have not studied Chapter 3 may use this formula as
the definition of det A. It is a remarkable and nontrivial fact that any echelon form U obtained from A

without scaling gives the same value for det A.
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THEOREM 3 Properties of Determinants

Let A and B be n � n matrices.
a. A is invertible if and only if det A ¤ 0.
b. det AB D .det A/.det B/.
c. det AT D det A.
d. If A is triangular, then det A is the product of the entries on the main diagonal

of A.
e. A row replacement operation on A does not change the determinant. A row

interchange changes the sign of the determinant. A row scaling also scales the
determinant by the same scalar factor.

The Characteristic Equation
Theorem 3(a) shows how to determine when a matrix of the form A � �I is not
invertible. The scalar equation det.A � �I/ D 0 is called the characteristic equation
of A, and the argument in Example 1 justifies the following fact.

A scalar � is an eigenvalue of an n � n matrix A if and only if � satisfies the
characteristic equation

det.A � �I/ D 0

EXAMPLE 3 Find the characteristic equation of

A D

2664
5 �2 6 �1

0 3 �8 0

0 0 5 4

0 0 0 1

3775
SOLUTION Form A � �I , and use Theorem 3(d):

det.A � �I/ D det

2664
5 � � �2 6 �1

0 3 � � �8 0

0 0 5 � � 4

0 0 0 1 � �

3775
D .5 � �/.3 � �/.5 � �/.1 � �/

The characteristic equation is
.5 � �/2.3 � �/.1 � �/ D 0

or
.� � 5/2.� � 3/.� � 1/ D 0

Expanding the product, we can also write
�4

� 14�3
C 68�2

� 130� C 75 D 0

In Examples 1 and 3, det .A � �I/ is a polynomial in �. It can be shown that if A is
an n � n matrix, then det .A � �I/ is a polynomial of degree n called the characteristic
polynomial of A.

The eigenvalue 5 in Example 3 is said to have multiplicity 2 because .� � 5/

occurs two times as a factor of the characteristic polynomial. In general, the (algebraic)
multiplicity of an eigenvalue � is its multiplicity as a root of the characteristic equation.

SECOND REVISED PAGES



5.2 The Characteristic Equation 279

EXAMPLE 4 The characteristic polynomial of a 6 � 6 matrix is �6 � 4�5 � 12�4.
Find the eigenvalues and their multiplicities.
SOLUTION Factor the polynomial

�6
� 4�5

� 12�4
D �4.�2

� 4� � 12/ D �4.� � 6/.� C 2/

The eigenvalues are 0 (multiplicity 4), 6 (multiplicity 1), and �2 (multiplicity 1).
We could also list the eigenvalues in Example 4 as 0; 0; 0; 0; 6, and �2, so that the

eigenvalues are repeated according to their multiplicities.
Because the characteristic equation for an n � n matrix involves an nth-degree

polynomial, the equation has exactly n roots, counting multiplicities, provided complex
roots are allowed. Such complex roots, called complex eigenvalues, will be discussed
in Section 5.5. Until then, we consider only real eigenvalues, and scalars will continue
to be real numbers.

The characteristic equation is important for theoretical purposes. In practical work,
however, eigenvalues of any matrix larger than 2 � 2 should be found by a computer,
unless the matrix is triangular or has other special properties. Although a 3 � 3 charac-
teristic polynomial is easy to compute by hand, factoring it can be difficult (unless the
matrix is carefully chosen). See the Numerical Notes at the end of this section.SG

Factoring a
Polynomial 5–8

Similarity
The next theorem illustrates one use of the characteristic polynomial, and it provides
the foundation for several iterative methods that approximate eigenvalues. If A and
B are n � n matrices, then A is similar to B if there is an invertible matrix P

such that P�1AP D B , or, equivalently, A D PBP�1. Writing Q for P�1, we have
Q�1BQ D A. So B is also similar to A, and we say simply that A and B are similar.
Changing A into P�1AP is called a similarity transformation.

THEOREM 4 If n � n matrices A and B are similar, then they have the same characteristic
polynomial and hence the same eigenvalues (with the same multiplicities).

PROOF If B D P�1AP, then
B � �I D P�1AP � �P�1P D P�1.AP � �P / D P�1.A � �I/P

Using the multiplicative property (b) in Theorem 3, we compute
det.B � �I/ D detŒP�1.A � �I/P �

D det.P�1/ � det.A � �I/ � det.P / (2)
Since det.P�1/ � det.P / D det.P�1P / D det I D 1, we see from equation (2) that
det.B � �I/ D det.A � �I/.

WARNINGS:
1. The matrices �

2 1

0 2

�
and

�
2 0

0 2

�
are not similar even though they have the same eigenvalues.

2. Similarity is not the same as row equivalence. (If A is row equivalent to B , then
B D EA for some invertible matrix E.) Row operations on a matrix usually
change its eigenvalues.

SECOND REVISED PAGES



280 CHAPTER 5 Eigenvalues and Eigenvectors

Application to Dynamical Systems
Eigenvalues and eigenvectors hold the key to the discrete evolution of a dynamical
system, as mentioned in the chapter introduction.

EXAMPLE 5 Let A D

�
:95 :03

:05 :97

�
. Analyze the long-term behavior of the dynam-

ical system defined by xkC1 D Axk .k D 0; 1; 2; : : :/, with x0 D

�
:6

:4

�
.

SOLUTION The first step is to find the eigenvalues of A and a basis for each eigenspace.
The characteristic equation for A is

0 D det
�

:95 � � :03

:05 :97 � �

�
D .:95 � �/.:97 � �/ � .:03/.:05/

D �2
� 1:92� C :92

By the quadratic formula

� D
1:92 ˙

p
.1:92/2 � 4.:92/

2
D

1:92 ˙
p

:0064

2

D
1:92 ˙ :08

2
D 1 or :92

It is readily checked that eigenvectors corresponding to � D 1 and � D :92 are multiples
of

v1 D

�
3

5

�
and v2 D

�
1

�1

�
respectively.

The next step is to write the given x0 in terms of v1 and v2. This can be done because
fv1; v2g is obviously a basis for R2. (Why?) So there exist weights c1 and c2 such that

x0 D c1v1 C c2v2 D Œ v1 v2 �

�
c1

c2

�
(3)

In fact, �
c1

c2

�
D Œ v1 v2 �

�1x0 D

�
3 1

5 �1

��1�
:60

:40

�
D

1

�8

�
�1 �1

�5 3

��
:60

:40

�
D

�
:125

:225

�
(4)

Because v1 and v2 in (3) are eigenvectors of A, with Av1 D v1 and Av2 D :92v2, we
easily compute each xk :

x1 D Ax0 D c1Av1 C c2Av2 Using linearity of x 7! Ax
D c1v1 C c2.:92/v2 v1 and v2 are eigenvectors.

x2 D Ax1 D c1Av1 C c2.:92/Av2

D c1v1 C c2.:92/2v2

and so on. In general,
xk D c1v1 C c2.:92/kv2 .k D 0; 1; 2; : : :/

Using c1 and c2 from (4),

xk D :125

�
3

5

�
C :225.:92/k

�
1

�1

�
.k D 0; 1; 2; : : :/ (5)
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This explicit formula for xk gives the solution of the difference equation xkC1 D Axk .
As k ! 1, .:92/k tends to zero and xk tends to

�
:375

:625

�
D :125v1.

The calculations in Example 5 have an interesting application to a Markov chain
discussed in Section 4.9. Those who read that section may recognize that matrix A

in Example 5 above is the same as the migration matrix M in Section 4.9, x0 is the
initial population distribution between city and suburbs, and xk represents the population
distribution after k years.

Theorem 18 in Section 4.9 stated that for a matrix such as A, the sequence xk tends
to a steady-state vector. Now we know why the xk behave this way, at least for the
migration matrix. The steady-state vector is :125v1, a multiple of the eigenvector v1,
and formula (5) for xk shows precisely why xk ! :125v1.

NUMER ICAL NOTES

1. Computer software such as Mathematica and Maple can use symbolic calcu-
lations to find the characteristic polynomial of a moderate-sized matrix. But
there is no formula or finite algorithm to solve the characteristic equation of a
general n � n matrix for n � 5.

2. The best numerical methods for finding eigenvalues avoid the characteristic
polynomial entirely. In fact, MATLAB finds the characteristic polynomial
of a matrix A by first computing the eigenvalues �1; : : : ; �n of A and then
expanding the product .� � �1/.� � �2/ � � � .� � �n/.

3. Several common algorithms for estimating the eigenvalues of a matrix A

are based on Theorem 4. The powerful QR algorithm is discussed in the
exercises. Another technique, called Jacobi’s method, works when A D AT

and computes a sequence of matrices of the form
A1 D A and AkC1 D P�1

k AkPk .k D 1; 2; : : :/

Each matrix in the sequence is similar to A and so has the same eigenvalues
as A. The nondiagonal entries of AkC1 tend to zero as k increases, and the
diagonal entries tend to approach the eigenvalues of A.

4. Other methods of estimating eigenvalues are discussed in Section 5.8.

PRACTICE PROBLEM

Find the characteristic equation and eigenvalues of A D

�
1 �4

4 2

�
.

5.2 EXERCISES
Find the characteristic polynomial and the eigenvalues of the
matrices in Exercises 1–8.

1.
�

2 7

7 2

�
2.

�
5 3

3 5

�

3.
�

3 �2

1 �1

�
4.

�
5 �3

�4 3

�

5.
�

2 1

�1 4

�
6.

�
3 �4

4 8

�
7.

�
5 3

�4 4

�
8.

�
7 �2

2 3

�
Exercises 9–14 require techniques from Section 3.1. Find the
characteristic polynomial of each matrix, using either a cofactor
expansion or the special formula for 3 � 3 determinants described
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prior to Exercises 15–18 in Section 3.1. [Note: Finding the char-
acteristic polynomial of a 3 � 3 matrix is not easy to do with just
row operations, because the variable � is involved.]

9.
24 1 0 �1

2 3 �1

0 6 0

35 10.
24 0 3 1

3 0 2

1 2 0

35
11.

24 4 0 0

5 3 2

�2 0 2

35 12.
24�1 0 1

�3 4 1

0 0 2

35
13.

24 6 �2 0

�2 9 0

5 8 3

35 14.
24 5 �2 3

0 1 0

6 7 �2

35
For the matrices in Exercises 15–17, list the eigenvalues, repeated
according to their multiplicities.

15.

2664
4 �7 0 2

0 3 �4 6

0 0 3 �8

0 0 0 1

3775 16.

2664
5 0 0 0

8 �4 0 0

0 7 1 0

1 �5 2 1

3775

17.

266664
3 0 0 0 0

�5 1 0 0 0

3 8 0 0 0

0 �7 2 1 0

�4 1 9 �2 3

377775
18. It can be shown that the algebraic multiplicity of an eigen-

value � is always greater than or equal to the dimension of the
eigenspace corresponding to �. Find h in the matrix A below
such that the eigenspace for � D 5 is two-dimensional:

A D

2664
5 �2 6 �1

0 3 h 0

0 0 5 4

0 0 0 1

3775
19. Let A be an n � n matrix, and suppose A has n real eigenval-

ues, �1; : : : ; �n, repeated according to multiplicities, so that
det.A � �I/ D .�1 � �/.�2 � �/ � � � .�n � �/

Explain why det A is the product of the n eigenvalues of
A. (This result is true for any square matrix when complex
eigenvalues are considered.)

20. Use a property of determinants to show that A and AT have
the same characteristic polynomial.

In Exercises 21 and 22, A and B are n � n matrices. Mark each
statement True or False. Justify each answer.

21. a. The determinant of A is the product of the diagonal entries
in A.

b. An elementary row operation on A does not change the
determinant.

c. .det A/.det B/ D det AB

d. If � C 5 is a factor of the characteristic polynomial of A,
then 5 is an eigenvalue of A.

22. a. If A is 3 � 3, with columns a1, a2, and a3, then det A

equals the volume of the parallelepiped determined by a1,
a2 and a3.

b. det AT D .�1/ det A.
c. The multiplicity of a root r of the characteristic equation

of A is called the algebraic multiplicity of r as an eigen-
value of A.

d. A row replacement operation on A does not change the
eigenvalues.

A widely used method for estimating eigenvalues of a general
matrix A is the QR algorithm. Under suitable conditions, this al-
gorithm produces a sequence of matrices, all similar to A, that be-
come almost upper triangular, with diagonal entries that approach
the eigenvalues of A. The main idea is to factor A (or another
matrix similar to A) in the form A D Q1R1, where QT

1 D Q�1
1

and R1 is upper triangular. The factors are interchanged to form
A1 D R1Q1, which is again factored as A1 D Q2R2; then to form
A2 D R2Q2, and so on. The similarity of A; A1; : : : follows from
the more general result in Exercise 23.
23. Show that if A D QR with Q invertible, then A is similar to

A1 D RQ.
24. Show that if A and B are similar, then det A D det B .

25. Let A D

�
:6 :3

:4 :7

�
, v1 D

�
3=7

4=7

�
, x0 D

�
:5

:5

�
. [Note: A is

the stochastic matrix studied in Example 5 of Section 4.9.]
a. Find a basis for R2 consisting of v1 and another eigenvec-

tor v2 of A.
b. Verify that x0 may be written in the form x0 D v1 C cv2.
c. For k D 1; 2; : : : ; define xk D Akx0. Compute x1 and x2,

and write a formula for xk . Then show that xk ! v1 as k

increases.

26. Let A D

�
a b

c d

�
. Use formula (1) for a determinant

(given before Example 2) to show that det A D ad � bc.
Consider two cases: a ¤ 0 and a D 0.

27. Let A D

24 :5 :2 :3

:3 :8 :3

:2 0 :4

35, v1 D

24 :3

:6

:1

35, v2 D

24 1

�3

2

35,

v3 D

24�1

0

1

35, and w D

24 1

1

1

35.

a. Show that v1, v2, and v3 are eigenvectors of A. [Note: A is
the stochastic matrix studied in Example 3 of Section 4.9.]

b. Let x0 be any vector in R3 with nonnegative entries whose
sum is 1. (In Section 4.9, x0 was called a probability
vector.) Explain why there are constants c1, c2, and c3

such that x0 D c1v1 C c2v2 C c3v3. Compute wT x0, and
deduce that c1 D 1.

c. For k D 1; 2; : : : ; define xk D Akx0, with x0 as in part
(b). Show that xk ! v1 as k increases.
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28. [M] Construct a random integer-valued 4 � 4 matrix A, and
verify that A and AT have the same characteristic polynomial
(the same eigenvalues with the same multiplicities). Do A

and AT have the same eigenvectors? Make the same analysis
of a 5 � 5 matrix. Report the matrices and your conclusions.

29. [M] Construct a random integer-valued 4 � 4 matrix A.
a. Reduce A to echelon form U with no row scaling, and use

U in formula (1) (before Example 2) to compute det A. (If
A happens to be singular, start over with a new random
matrix.)

b. Compute the eigenvalues of A and the product of these
eigenvalues (as accurately as possible).

c. List the matrix A, and, to four decimal places, list the
pivots in U and the eigenvalues of A. Compute det A with
your matrix program, and compare it with the products
you found in (a) and (b).

30. [M] Let A D

24�6 28 21

4 �15 �12

�8 a 25

35. For each value of a in

the set f32; 31:9; 31:8; 32:1; 32:2g, compute the characteris-
tic polynomial of A and the eigenvalues. In each case, create
a graph of the characteristic polynomial p.t/ D det .A � tI /

for 0 � t � 3. If possible, construct all graphs on one coordi-
nate system. Describe how the graphs reveal the changes in
the eigenvalues as a changes.

SOLUTION TO PRACTICE PROBLEM

The characteristic equation is

0 D det.A � �I/ D det
�

1 � � �4

4 2 � �

�
D .1 � �/.2 � �/ � .�4/.4/ D �2

� 3� C 18

From the quadratic formula,

� D
3 ˙

p
.�3/2 � 4.18/

2
D

3 ˙
p

�63

2

It is clear that the characteristic equation has no real solutions, so A has no real
eigenvalues. The matrix A is acting on the real vector space R2, and there is no nonzero
vector v in R2 such that Av D �v for some scalar �.

5.3 DIAGONALIZATION

In many cases, the eigenvalue–eigenvector information contained within a matrix A can
be displayed in a useful factorization of the form A D PDP�1 where D is a diagonal ma-
trix. In this section, the factorization enables us to compute Ak quickly for large values
of k, a fundamental idea in several applications of linear algebra. Later, in Sections 5.6
and 5.7, the factorization will be used to analyze (and decouple) dynamical systems.

The following example illustrates that powers of a diagonal matrix are easy to
compute.

EXAMPLE 1 If D D

�
5 0

0 3

�
, then D2 D

�
5 0

0 3

��
5 0

0 3

�
D

�
52 0

0 32

�
and

D3
D DD2

D

�
5 0

0 3

� �
52 0

0 32

�
D

�
53 0

0 33

�
In general,

Dk
D

�
5k 0

0 3k

�
for k � 1

If A D PDP�1 for some invertible P and diagonal D, then Ak is also easy to
compute, as the next example shows.
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EXAMPLE 2 Let A D

�
7 2

�4 1

�
. Find a formula for Ak , given that A D PDP�1,

where
P D

�
1 1

�1 �2

�
and D D

�
5 0

0 3

�
SOLUTION The standard formula for the inverse of a 2 � 2 matrix yields

P�1
D

�
2 1

�1 �1

�
Then, by associativity of matrix multiplication,

A2
D .PDP�1/.PDP�1/ D PD .P�1P /„ ƒ‚ …

I

DP�1
D PDDP�1

D PD2P�1
D

�
1 1

�1 �2

� �
52 0

0 32

� �
2 1

�1 �1

�
Again,

A3
D .PDP�1/A2

D .PDP�1/P„ƒ‚…
I

D2P�1
D PDD2P�1

D PD3P�1

In general, for k � 1,

Ak
D PDkP�1

D

�
1 1

�1 �2

� �
5k 0

0 3k

� �
2 1

�1 �1

�
D

�
2 � 5k � 3k 5k � 3k

2 � 3k � 2 � 5k 2 � 3k � 5k

�
A square matrix A is said to be diagonalizable if A is similar to a diagonal matrix,

that is, if A D PDP�1 for some invertible matrix P and some diagonal matrix D.
The next theorem gives a characterization of diagonalizable matrices and tells how to
construct a suitable factorization.

THEOREM 5 The Diagonalization Theorem

An n � n matrix A is diagonalizable if and only if A has n linearly independent
eigenvectors.

In fact, A D PDP�1, with D a diagonal matrix, if and only if the columns of
P are n linearly independent eigenvectors of A. In this case, the diagonal entries
of D are eigenvalues of A that correspond, respectively, to the eigenvectors in P .

In other words, A is diagonalizable if and only if there are enough eigenvectors to
form a basis of Rn. We call such a basis an eigenvector basis of Rn.

PROOF First, observe that if P is any n � n matrix with columns v1; : : : ; vn, and if D

is any diagonal matrix with diagonal entries �1; : : : ; �n, then
AP D AŒ v1 v2 � � � vn � D Œ Av1 Av2 � � � Avn � (1)

while

PD D P

26664
�1 0 � � � 0

0 �2 � � � 0
:::

:::
:::

0 0 � � � �n

37775 D Œ �1v1 �2v2 � � � �nvn � (2)
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Now suppose A is diagonalizable and A D PDP�1. Then right-multiplying this relation
by P , we have AP D PD. In this case, equations (1) and (2) imply that

Œ Av1 Av2 � � � Avn � D Œ �1v1 �2v2 � � � �nvn � (3)
Equating columns, we find that

Av1 D �1v1; Av2 D �2v2; : : : ; Avn D �nvn (4)
Since P is invertible, its columns v1; : : : ; vn must be linearly independent. Also, since
these columns are nonzero, the equations in (4) show that �1; : : : ; �n are eigenvalues
and v1; : : : ; vn are corresponding eigenvectors. This argument proves the “only if” parts
of the first and second statements, along with the third statement, of the theorem.

Finally, given any n eigenvectors v1; : : : ; vn, use them to construct the columns
of P and use corresponding eigenvalues �1; : : : ; �n to construct D. By equations (1)–
(3), AP D PD. This is true without any condition on the eigenvectors. If, in fact, the
eigenvectors are linearly independent, then P is invertible (by the Invertible Matrix
Theorem), and AP D PD implies that A D PDP�1.

Diagonalizing Matrices
EXAMPLE 3 Diagonalize the following matrix, if possible.

A D

24 1 3 3

�3 �5 �3

3 3 1

35
That is, find an invertible matrix P and a diagonal matrix D such that A D PDP�1.
SOLUTION There are four steps to implement the description in Theorem 5.
Step 1. Find the eigenvalues of A. As mentioned in Section 5.2, the mechanics of
this step are appropriate for a computer when the matrix is larger than 2 � 2. To avoid
unnecessary distractions, the text will usually supply information needed for this step.
In the present case, the characteristic equation turns out to involve a cubic polynomial
that can be factored:

0 D det .A � �I/ D ��3
� 3�2

C 4

D �.� � 1/.� C 2/2

The eigenvalues are � D 1 and � D �2.
Step 2. Find three linearly independent eigenvectors of A. Three vectors are needed
because A is a 3 � 3 matrix. This is the critical step. If it fails, then Theorem 5 says
that A cannot be diagonalized. The method in Section 5.1 produces a basis for each
eigenspace:

Basis for � D 1W v1 D

24 1

�1

1

35
Basis for � D �2W v2 D

24�1

1

0

35 and v3 D

24�1

0

1

35
You can check that fv1; v2; v3g is a linearly independent set.
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Step 3. Construct P from the vectors in step 2. The order of the vectors is unimportant.
Using the order chosen in step 2, form

P D
�v1 v2 v3

�
D

24 1 �1 �1

�1 1 0

1 0 1

35
Step 4. Construct D from the corresponding eigenvalues. In this step, it is essential that
the order of the eigenvalues matches the order chosen for the columns of P . Use the
eigenvalue � D �2 twice, once for each of the eigenvectors corresponding to � D �2:

D D

24 1 0 0

0 �2 0

0 0 �2

35
It is a good idea to check that P and D really work. To avoid computing P�1,

simply verify that AP D PD. This is equivalent to A D PDP�1 when P is invertible.
(However, be sure that P is invertible!) Compute

AP D

24 1 3 3

�3 �5 �3

3 3 1

3524 1 �1 �1

�1 1 0

1 0 1

35 D

24 1 2 2

�1 �2 0

1 0 �2

35
PD D

24 1 �1 �1

�1 1 0

1 0 1

3524 1 0 0

0 �2 0

0 0 �2

35 D

24 1 2 2

�1 �2 0

1 0 �2

35
EXAMPLE 4 Diagonalize the following matrix, if possible.

A D

24 2 4 3

�4 �6 �3

3 3 1

35
SOLUTION The characteristic equation of A turns out to be exactly the same as that in
Example 3:

0 D det .A � �I/ D ��3
� 3�2

C 4 D �.� � 1/.� C 2/2

The eigenvalues are � D 1 and � D �2. However, it is easy to verify that each
eigenspace is only one-dimensional:

Basis for � D 1W v1 D

24 1

�1

1

35
Basis for � D �2W v2 D

24�1

1

0

35
There are no other eigenvalues, and every eigenvector of A is a multiple of either v1

or v2. Hence it is impossible to construct a basis of R3 using eigenvectors of A. By
Theorem 5, A is not diagonalizable.

The following theorem provides a sufficient condition for a matrix to be
diagonalizable.

THEOREM 6 An n � n matrix with n distinct eigenvalues is diagonalizable.
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PROOF Let v1; : : : ; vn be eigenvectors corresponding to the n distinct eigenvalues of
a matrix A. Then fv1; : : : ; vng is linearly independent, by Theorem 2 in Section 5.1.
Hence A is diagonalizable, by Theorem 5.

It is not necessary for an n � n matrix to have n distinct eigenvalues in order to be
diagonalizable. The 3 � 3 matrix in Example 3 is diagonalizable even though it has only
two distinct eigenvalues.

EXAMPLE 5 Determine if the following matrix is diagonalizable.

A D

24 5 �8 1

0 0 7

0 0 �2

35
SOLUTION This is easy! Since the matrix is triangular, its eigenvalues are obviously 5,
0, and �2. Since A is a 3 � 3 matrix with three distinct eigenvalues, A is diagonalizable.

Matrices Whose Eigenvalues Are Not Distinct
If an n � n matrix A has n distinct eigenvalues, with corresponding eigenvectors v1; : : : ;

vn, and if P D Œ v1 � � � vn �, then P is automatically invertible because its columns
are linearly independent, by Theorem 2. When A is diagonalizable but has fewer than n

distinct eigenvalues, it is still possible to build P in a way that makes P automatically
invertible, as the next theorem shows.1

THEOREM 7 Let A be an n � n matrix whose distinct eigenvalues are �1; : : : ; �p .
a. For 1 � k � p, the dimension of the eigenspace for �k is less than or equal to

the multiplicity of the eigenvalue �k .
b. The matrix A is diagonalizable if and only if the sum of the dimensions of

the eigenspaces equals n, and this happens if and only if (i) the characteristic
polynomial factors completely into linear factors and (ii) the dimension of the
eigenspace for each �k equals the multiplicity of �k .

c. If A is diagonalizable and Bk is a basis for the eigenspace corresponding to �k

for each k, then the total collection of vectors in the sets B1; : : : ;Bp forms an
eigenvector basis for Rn.

EXAMPLE 6 Diagonalize the following matrix, if possible.

A D

2664
5 0 0 0

0 5 0 0

1 4 �3 0

�1 �2 0 �3

3775

1 The proof of Theorem 7 is somewhat lengthy but not difficult. For instance, see S. Friedberg, A. Insel, and
L. Spence, Linear Algebra, 4th ed. (Englewood Cliffs, NJ: Prentice-Hall, 2002), Section 5.2.
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SOLUTION Since A is a triangular matrix, the eigenvalues are 5 and �3, each with
multiplicity 2. Using the method in Section 5.1, we find a basis for each eigenspace.

Basis for � D 5W v1 D

2664
�8

4

1

0

3775 and v2 D

2664
�16

4

0

1

3775

Basis for � D �3W v3 D

2664
0

0

1

0

3775 and v4 D

2664
0

0

0

1

3775
The set fv1; : : : ; v4g is linearly independent, by Theorem 7. So the matrix P D

Œ v1 � � � v4 � is invertible, and A D PDP�1, where

P D

2664
�8 �16 0 0

4 4 0 0

1 0 1 0

0 1 0 1

3775 and D D

2664
5 0 0 0

0 5 0 0

0 0 �3 0

0 0 0 �3

3775

PRACTICE PROBLEMS

1. Compute A8, where A D

�
4 �3

2 �1

�
.

2. Let A D

�
�3 12

�2 7

�
, v1 D

�
3

1

�
, and v2 D

�
2

1

�
. Suppose you are told that v1 and

v2 are eigenvectors of A. Use this information to diagonalize A.
3. Let A be a 4 � 4 matrix with eigenvalues 5, 3, and �2, and suppose you know that

the eigenspace for � D 3 is two-dimensional. Do you have enough information to
determine if A is diagonalizable?WEB

5.3 EXERCISES
In Exercises 1 and 2, let A D PDP�1 and compute A4.

1. P D

�
5 7

2 3

�
, D D

�
2 0

0 1

�

2. P D

�
2 �3

�3 5

�
, D D

�
1 0

0 1=2

�
In Exercises 3 and 4, use the factorization A D PDP�1 to com-
pute Ak , where k represents an arbitrary positive integer.

3.
�

a 0

3.a � b/ b

�
D

�
1 0

3 1

��
a 0

0 b

��
1 0

�3 1

�

4.
�

�2 12

�1 5

�
D

�
3 4

1 1

��
2 0

0 1

��
�1 4

1 �3

�
In Exercises 5 and 6, the matrix A is factored in the form PDP�1.
Use the Diagonalization Theorem to find the eigenvalues of A and
a basis for each eigenspace.

5.
24 2 2 1

1 3 1

1 2 2

35 D

24 1 1 2

1 0 �1

1 �1 0

3524 5 0 0

0 1 0

0 0 1

3524 1=4 1=2 1=4

1=4 1=2 �3=4

1=4 �1=2 1=4

35

6.
24 4 0 �2

2 5 4

0 0 5

35 D

24�2 0 �1

0 1 2

1 0 0

3524 5 0 0

0 5 0

0 0 4

3524 0 0 1

2 1 4

�1 0 �2

35
Diagonalize the matrices in Exercises 7–20, if possible. The
eigenvalues for Exercises 11–16 are as follows: (11) � D 1; 2; 3;
(12) � D 2; 8; (13) � D 5; 1; (14) � D 5; 4; (15) � D 3; 1; (16)
� D 2; 1. For Exercise 18, one eigenvalue is � D 5 and one
eigenvector is .�2; 1; 2/.
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7.
�

1 0

6 �1

�
8.

�
5 1

0 5

�
9.

�
3 �1

1 5

�
10.

�
2 3

4 1

�

11.
24�1 4 �2

�3 4 0

�3 1 3

35 12.
24 4 2 2

2 4 2

2 2 4

35
13.

24 2 2 �1

1 3 �1

�1 �2 2

35 14.
24 4 0 �2

2 5 4

0 0 5

35
15.

24 7 4 16

2 5 8

�2 �2 �5

35 16.
24 0 �4 �6

�1 0 �3

1 2 5

35
17.

24 4 0 0

1 4 0

0 0 5

35 18.
24�7 �16 4

6 13 �2

12 16 1

35

19.

2664
5 �3 0 9

0 3 1 �2

0 0 2 0

0 0 0 2

3775 20.

2664
4 0 0 0

0 4 0 0

0 0 2 0

1 0 0 2

3775
In Exercises 21 and 22, A, B , P, and D are n � n matrices.
Mark each statement True or False. Justify each answer. (Study
Theorems 5 and 6 and the examples in this section carefully before
you try these exercises.)

21. a. A is diagonalizable if A D PDP�1 for some matrix D

and some invertible matrix P .
b. If Rn has a basis of eigenvectors of A, then A is diago-

nalizable.
c. A is diagonalizable if and only if A has n eigenvalues,

counting multiplicities.
d. If A is diagonalizable, then A is invertible.

22. a. A is diagonalizable if A has n eigenvectors.
b. If A is diagonalizable, then A has n distinct eigenvalues.
c. If AP D PD, with D diagonal, then the nonzero columns

of P must be eigenvectors of A.
d. If A is invertible, then A is diagonalizable.

23. A is a 5 � 5 matrix with two eigenvalues. One eigenspace
is three-dimensional, and the other eigenspace is two-
dimensional. Is A diagonalizable? Why?

24. A is a 3 � 3 matrix with two eigenvalues. Each eigenspace is
one-dimensional. Is A diagonalizable? Why?

25. A is a 4 � 4 matrix with three eigenvalues. One eigenspace
is one-dimensional, and one of the other eigenspaces is two-
dimensional. Is it possible that A is not diagonalizable?
Justify your answer.

26. A is a 7 � 7 matrix with three eigenvalues. One eigenspace is
two-dimensional, and one of the other eigenspaces is three-
dimensional. Is it possible that A is not diagonalizable?
Justify your answer.

27. Show that if A is both diagonalizable and invertible, then so
is A�1.

28. Show that if A has n linearly independent eigenvectors, then
so does AT . [Hint: Use the Diagonalization Theorem.]

29. A factorization A D PDP�1 is not unique. Demonstrate this
for the matrix A in Example 2. With D1 D

�
3 0

0 5

�
, use

the information in Example 2 to find a matrix P1 such that
A D P1D1P

�1
1 .

30. With A and D as in Example 2, find an invertible P2 unequal
to the P in Example 2, such that A D P2DP�1

2 .
31. Construct a nonzero 2 � 2 matrix that is invertible but not

diagonalizable.
32. Construct a nondiagonal 2 � 2 matrix that is diagonalizable

but not invertible.

[M] Diagonalize the matrices in Exercises 33–36. Use your ma-
trix program’s eigenvalue command to find the eigenvalues, and
then compute bases for the eigenspaces as in Section 5.1.

33.

2664
�6 4 0 9

�3 0 1 6

�1 �2 1 0

�4 4 0 7

3775 34.

2664
0 13 8 4

4 9 8 4

8 6 12 8

0 5 0 �4

3775

35.

266664
11 �6 4 �10 �4

�3 5 �2 4 1

�8 12 �3 12 4

1 6 �2 3 �1

8 �18 8 �14 �1

377775

36.

266664
4 4 2 3 �2

0 1 �2 �2 2

6 12 11 2 �4

9 20 10 10 �6

15 28 14 5 �3

377775
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SOLUTIONS TO PRACTICE PROBLEMS

1. det .A � �I/ D �2 � 3� C 2 D .� � 2/.� � 1/. The eigenvalues are 2 and 1, and
the corresponding eigenvectors are v1 D

�
3

2

�
and v2 D

�
1

1

�
. Next, form

P D

�
3 1

2 1

�
; D D

�
2 0

0 1

�
; and P�1

D

�
1 �1

�2 3

�

Since A D PDP�1,

A8
D PD8P�1

D

�
3 1

2 1

��
28 0

0 18

��
1 �1

�2 3

�
D

�
3 1

2 1

��
256 0

0 1

��
1 �1

�2 3

�
D

�
766 �765

510 �509

�

2. Compute Av1 D

�
�3 12

�2 7

��
3

1

�
D

�
3

1

�
D 1 � v1, and

Av2 D

�
�3 12

�2 7

��
2

1

�
D

�
6

3

�
D 3 � v2

So, v1 and v2 are eigenvectors for the eigenvalues 1 and 3, respectively. Thus

A D PDP�1; where P D

�
3 2

1 1

�
and D D

�
1 0

0 3

�
3. Yes, A is diagonalizable. There is a basis fv1; v2g for the eigenspace corresponding

to � D 3. In addition, there will be at least one eigenvector for � D 5 and one
for � D �2. Call them v3 and v4. Then fv1; v2; v3; v4g is linearly independent by
Theorem 2 and Practice Problem 3 in Section 5.1. There can be no additional
eigenvectors that are linearly independent from v1, v2, v3, v4, because the vectors are
all in R4. Hence the eigenspaces for � D 5 and � D �2 are both one-dimensional.
It follows that A is diagonalizable by Theorem 7(b).SG

Mastering: Eigenvalue
and Eigenspace 5–14

5.4 EIGENVECTORS AND LINEAR TRANSFORMATIONS

The goal of this section is to understand the matrix factorization A D PDP�1 as a
statement about linear transformations. We shall see that the transformation x 7!Ax
is essentially the same as the very simple mapping u 7!Du, when viewed from the
proper perspective. A similar interpretation will apply to A and D even when D is not
a diagonal matrix.

Recall from Section 1.9 that any linear transformation T from Rn to Rm can be
implemented via left-multiplication by a matrix A, called the standard matrix of T .
Now we need the same sort of representation for any linear transformation between two
finite-dimensional vector spaces.
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5.4 Eigenvectors and Linear Transformations 291

The Matrix of a Linear Transformation
Let V be an n-dimensional vector space, let W be an m-dimensional vector space, and
let T be any linear transformation from V to W . To associate a matrix with T , choose
(ordered) bases B and C for V and W , respectively.

Given any x in V , the coordinate vector Œ x �B is in Rn and the coordinate vector of
its image, Œ T .x/ �C , is in Rm, as shown in Figure 1.

[x]B

�n
�m

x

V T W

T(x)

[T(x)]C

FIGURE 1 A linear transformation from V to W .

The connection between Œ x �B and Œ T .x/ �C is easy to find. Let fb1; : : : ; bng be the
basis B for V . If x D r1b1 C � � � C rnbn, then

Œx�B D

264 r1
:::

rn

375
and

T .x/ D T .r1b1 C � � � C rnbn/ D r1T .b1/ C � � � C rnT .bn/ (1)
because T is linear. Now, since the coordinate mapping from W to Rm is linear
(Theorem 8 in Section 4.4), equation (1) leads to

Œ T .x/ �C D r1Œ T .b1/ �C C � � � C rnŒ T .bn/ �C (2)
Since C-coordinate vectors are in Rm, the vector equation (2) can be written as a matrix
equation, namely,

Œ T .x/ �C D MŒ x �B (3)

where
M D

�
Œ T .b1/ �C Œ T .b2/ �C � � � Œ T .bn/ �C

� (4)

The matrix M is a matrix representation of T , called the matrix for T relative to the
bases B and C. See Figure 2.

[T(x)]C

T(x)
T

x

Multiplication
by M

[x]B

FIGURE 2

Equation (3) says that, so far as coordinate vectors are concerned, the action of T

on x may be viewed as left-multiplication by M .

EXAMPLE 1 Suppose B D fb1; b2g is a basis for V and C D fc1; c2; c3g is a basis
for W . Let T W V ! W be a linear transformation with the property that

T .b1/ D 3c1 � 2c2 C 5c3 and T .b2/ D 4c1 C 7c2 � c3

Find the matrix M for T relative to B and C.
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SOLUTION The C-coordinate vectors of the images of b1 and b2 are

Œ T .b1/ �C D

24 3

�2

5

?

35 and Œ T .b2/ �C D

24 4

7

�1

?

35
Hence

M D

24 3 4

�2 7

5 �1

35
If B and C are bases for the same space V and if T is the identity transformation

T .x/ D x for x in V , then matrix M in (4) is just a change-of-coordinates matrix (see
Section 4.7).

Linear Transformations from V into V

In the common case where W is the same as V and the basis C is the same as B, the
x

T
T(x)

[T(x)]B
Multiplication

by [T]B
[x]B

FIGURE 3

matrix M in (4) is called the matrix for T relative to B, or simply the B-matrix for T,
and is denoted by Œ T �B. See Figure 3.

The B-matrix for T W V ! V satisfies

Œ T .x/ �B D Œ T �BŒ x �B; for all x in V (5)

EXAMPLE 2 The mapping T W P2 ! P2 defined by

T .a0 C a1t C a2t2/ D a1 C 2a2t

is a linear transformation. (Calculus students will recognize T as the differentiation
operator.)
a. Find the B-matrix for T , when B is the basis f1; t; t2g.
b. Verify that Œ T .p/ �B D Œ T �BŒ p �B for each p in P2.
SOLUTION

a. Compute the images of the basis vectors:

T .1/ D 0 The zero polynomial
T .t/ D 1 The polynomial whose value is always 1

T .t2/ D 2t

Then write the B-coordinate vectors of T .1/, T .t/, and T .t2/ (which are found by
inspection in this example) and place them together as the B-matrix for T :

Œ T .1/ �B D

24 0

0

0

?

35; Œ T .t/ �B D

24 1

0

0

?

35; Œ T .t2/ �B D

24 0

2

0

?

35

Œ T �B D

24 0 1 0

0 0 2

0 0 0

35
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b. For a general p.t/ D a0 C a1t C a2t2,

Œ T .p/ �B D Œ a1 C 2a2t �B D

24 a1

2a2

0

35
D

24 0 1 0

0 0 2

0 0 0

3524 a0

a1

a2

35 D Œ T �BŒ p �B

See Figure 4.

a0 + a1t + a2t2

a0

Multiplication
by [T ]B

a1

a1
2a2
0

a2

T

�2

�3

�3

�2

a1 + 2a2t

FIGURE 4 Matrix representation of a linear
transformation.WEB

Linear Transformations on Rn

In an applied problem involving Rn, a linear transformation T usually appears first as
a matrix transformation, x 7!Ax. If A is diagonalizable, then there is a basis B for Rn

consisting of eigenvectors of A. Theorem 8 below shows that, in this case, the B-matrix
for T is diagonal. Diagonalizing A amounts to finding a diagonal matrix representation
of x 7!Ax.

THEOREM 8 Diagonal Matrix Representation

Suppose A D PDP�1, where D is a diagonal n � n matrix. If B is the basis for
Rn formed from the columns of P , then D is the B-matrix for the transformation
x 7!Ax.

PROOF Denote the columns of P by b1; : : : ; bn, so that B D fb1; : : : ; bng and P D

Œ b1 � � � bn �. In this case, P is the change-of-coordinates matrix PB discussed in
Section 4.4, where

P Œ x �B D x and Œ x �B D P�1x
If T .x/ D Ax for x in Rn, then

Œ T �B D
�

Œ T .b1/ �B � � � Œ T .bn/ �B
�

Definition of Œ T �B

D
�

Œ Ab1 �B � � � Œ Abn �B
�

Since T .x/ D Ax
D Œ P�1Ab1 � � � P�1Abn � Change of coordinates
D P�1AŒ b1 � � � bn � Matrix multiplication
D P�1AP (6)

Since A D PDP�1, we have Œ T �B D P�1AP D D.
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EXAMPLE 3 Define T W R2 ! R2 by T .x/ D Ax, where A D

�
7 2

�4 1

�
. Find a

basis B for R2 with the property that the B-matrix for T is a diagonal matrix.
SOLUTION From Example 2 in Section 5.3, we know that A D PDP�1, where

P D

�
1 1

�1 �2

�
and D D

�
5 0

0 3

�
The columns of P , call them b1 and b2, are eigenvectors of A. By Theorem 8, D is the
B-matrix for T when B D fb1; b2g. The mappings x 7!Ax and u 7!Du describe the
same linear transformation, relative to different bases.

Similarity of Matrix Representations
The proof of Theorem 8 did not use the information that D was diagonal. Hence,
if A is similar to a matrix C , with A D P CP�1, then C is the B-matrix for the
transformation x 7!Ax when the basis B is formed from the columns of P . The
factorization A D P CP�1 is shown in Figure 5.

Multiplication
by A

Multiplication
by C

Multiplication
by P–1

[x]B

Multiplication
by P

[Ax]B

Axx

FIGURE 5 Similarity of two matrix representations:
A D PCP�1.

Conversely, if T W Rn ! Rn is defined by T .x/ D Ax, and if B is any basis for
Rn, then the B-matrix for T is similar to A. In fact, the calculations in the proof of
Theorem 8 show that if P is the matrix whose columns come from the vectors in B,
then ŒT �B D P�1AP. Thus, the set of all matrices similar to a matrix A coincides with
the set of all matrix representations of the transformation x 7! Ax.

EXAMPLE 4 Let A D

�
4 �9

4 �8

�
, b1 D

�
3

2

�
, and b2 D

�
2

1

�
. The characteristic

polynomial of A is .� C 2/2, but the eigenspace for the eigenvalue �2 is only one-
dimensional; so A is not diagonalizable. However, the basis B D fb1; b2g has the
property that the B-matrix for the transformation x 7! Ax is a triangular matrix called
the Jordan form of A.1 Find this B-matrix.
SOLUTION If P D Œ b1 b2 �, then the B-matrix is P�1AP. Compute

AP D

�
4 �9

4 �8

��
3 2

2 1

�
D

�
�6 �1

�4 0

�
P�1AP D

�
�1 2

2 �3

��
�6 �1

�4 0

�
D

�
�2 1

0 �2

�
Notice that the eigenvalue of A is on the diagonal.

1 Every square matrix A is similar to a matrix in Jordan form. The basis used to produce a Jordan form
consists of eigenvectors and so-called “generalized eigenvectors” of A. See Chapter 9 of Applied Linear
Algebra, 3rd ed. (Englewood Cliffs, NJ: Prentice-Hall, 1988), by B. Noble and J. W. Daniel.

SECOND REVISED PAGES



5.4 Eigenvectors and Linear Transformations 295

NUMER ICAL NOTE

An efficient way to compute a B-matrix P�1AP is to compute AP and then to row
reduce the augmented matrix Œ P AP � to Œ I P�1AP �. A separate computation
of P�1 is unnecessary. See Exercise 12 in Section 2.2.

PRACTICE PROBLEMS

1. Find T .a0 C a1t C a2t2/, if T is the linear transformation from P2 to P2 whose
matrix relative to B D f1; t; t2g is

Œ T �B D

24 3 4 0

0 5 �1

1 �2 7

35
2. Let A, B , and C be n � n matrices. The text has shown that if A is similar to B ,

then B is similar to A. This property, together with the statements below, shows that
“similar to” is an equivalence relation. (Row equivalence is another example of an
equivalence relation.) Verify parts (a) and (b).
a. A is similar to A.
b. If A is similar to B and B is similar to C , then A is similar to C .

5.4 EXERCISES
1. Let B D fb1; b2; b3g and D D fd1; d2g be bases for vector

spaces V and W , respectively. Let T W V ! W be a linear
transformation with the property that
T .b1/ D 3d1 � 5d2; T .b2/ D �d1 C 6d2; T .b3/ D 4d2

Find the matrix for T relative to B and D.

2. LetD D fd1; d2g andB D fb1; b2g be bases for vector spaces
V and W , respectively. Let T W V ! W be a linear transfor-
mation with the property that
T .d1/ D 2b1 � 3b2; T .d2/ D �4b1 C 5b2

Find the matrix for T relative to D and B.

3. Let E D fe1; e2; e3g be the standard basis for R3,
B D fb1; b2; b3g be a basis for a vector space V , and
T W R3 ! V be a linear transformation with the property
that
T .x1; x2; x3/ D .x3 � x2/b1 � .x1 C x3/b2 C .x1 � x2/b3

a. Compute T .e1/, T .e2/, and T .e3/.
b. Compute ŒT .e1/�B, ŒT .e2/�B, and ŒT .e3/�B.
c. Find the matrix for T relative to E and B.

4. Let B D fb1; b2; b3g be a basis for a vector space V and
T W V ! R2 be a linear transformation with the property that

T .x1b1 C x2b2 C x3b3/ D

�
2x1 � 4x2 C 5x3

�x2 C 3x3

�

Find the matrix for T relative to B and the standard basis for
R2.

5. Let T W P2 ! P3 be the transformation that maps a polyno-
mial p.t/ into the polynomial .t C 5/p.t/.
a. Find the image of p.t/ D 2 � t C t 2.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases f1; t; t 2g and

f1; t; t 2; t 3g.
6. Let T W P2 ! P4 be the transformation that maps a polyno-

mial p.t/ into the polynomial p.t/ C t 2p.t/.
a. Find the image of p.t/ D 2 � t C t 2.
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the bases f1; t; t 2g and

f1; t; t 2; t 3; t 4g.
7. Assume the mapping T W P2 ! P2 defined by

T .a0 C a1t C a2t
2/ D 3a0 C .5a0 � 2a1/t C .4a1 C a2/t

2

is linear. Find the matrix representation of T relative to the
basis B D f1; t; t 2g.

8. Let B D fb1; b2; b3g be a basis for a vector space V . Find
T .3b1 � 4b2/ when T is a linear transformation from V to
V whose matrix relative to B is

ŒT �B D

24 0 �6 1

0 5 �1

1 �2 7

35
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9. Define T W P2 ! R3 by T .p/ D

24 p.�1/

p.0/

p.1/

35.

a. Find the image under T of p.t/ D 5 C 3t .
b. Show that T is a linear transformation.
c. Find the matrix for T relative to the basis f1; t; t 2g for P2

and the standard basis for R3.

10. Define T W P3 ! R4 by T .p/ D

2664
p.�3/

p.�1/

p.1/

p.3/

3775.

a. Show that T is a linear transformation.
b. Find the matrix for T relative to the basis f1; t; t 2; t 3g for

P3 and the standard basis for R4.
In Exercises 11 and 12, find the B-matrix for the transformation
x 7!Ax, when B D fb1; b2g.

11. A D

�
3 4

�1 �1

�
, b1 D

�
2

�1

�
, b2 D

�
1

2

�
12. A D

�
�1 4

�2 3

�
, b1 D

�
3

2

�
, b2 D

�
�1

1

�
In Exercises 13–16, define T W R2 ! R2 by T .x/ D Ax. Find a
basis B for R2 with the property that ŒT �B is diagonal.

13. A D

�
0 1

�3 4

�
14. A D

�
5 �3

�7 1

�
15. A D

�
4 �2

�1 3

�
16. A D

�
2 �6

�1 3

�
17. Let A D

�
1 1

�1 3

�
and B D fb1; b2g, for b1 D

�
1

1

�
,

b2 D

�
5

4

�
. Define T W R2 ! R2 by T .x/ D Ax.

a. Verify that b1 is an eigenvector of A but A is not diago-
nalizable.

b. Find the B-matrix for T .
18. Define T W R3 ! R3 by T .x/ D Ax, where A is a 3 � 3

matrix with eigenvalues 5 and �2. Does there exist a basis
B for R3 such that the B-matrix for T is a diagonal matrix?
Discuss.

Verify the statements in Exercises 19–24. The matrices are square.
19. If A is invertible and similar to B , then B is invertible and

A�1 is similar to B�1. [Hint: P�1AP D B for some invert-
ible P . Explain why B is invertible. Then find an invertible
Q such that Q�1A�1Q D B�1.]

20. If A is similar to B , then A2 is similar to B2.
21. If B is similar to A and C is similar to A, then B is similar

to C .

22. If A is diagonalizable and B is similar to A, then B is also
diagonalizable.

23. If B D P�1AP and x is an eigenvector of A corresponding
to an eigenvalue �, then P�1x is an eigenvector of B corre-
sponding also to �.

24. If A and B are similar, then they have the same rank. [Hint:
Refer to Supplementary Exercises 13 and 14 for Chapter 4.]

25. The trace of a square matrix A is the sum of the diagonal
entries in A and is denoted by tr A. It can be verified that
tr.F G/ D tr.GF / for any two n � n matrices F and G.
Show that if A and B are similar, then tr A D tr B .

26. It can be shown that the trace of a matrix A equals the sum of
the eigenvalues of A. Verify this statement for the case when
A is diagonalizable.

27. Let V be Rn with a basis B D fb1; : : : ; bng; let W be Rn

with the standard basis, denoted here by E ; and consider the
identity transformation I W V ! W , where I.x/ D x. Find
the matrix for I relative to B and E . What was this matrix
called in Section 4.4?

28. Let V be a vector space with a basis B D fb1; : : : ; bng; W

be the same space as V with a basis C D fc1; : : : ; cng, and I

be the identity transformation I W V ! W . Find the matrix
for I relative to B and C. What was this matrix called in
Section 4.7?

29. Let V be a vector space with a basis B D fb1; : : : ; bng. Find
the B-matrix for the identity transformation I W V ! V .

[M] In Exercises 30 and 31, find the B-matrix for the transforma-
tion x 7! Ax when B D fb1; b2; b3g.

30. A D

24�14 4 �14

�33 9 �31

11 �4 11

35,

b1 D

24�1

�2

1

35, b2 D

24�1

�1

1

35, b3 D

24�1

�2

0

35
31. A D

24�7 �48 �16

1 14 6

�3 �45 �19

35,

b1 D

24�3

1

�3

35, b2 D

24�2

1

�3

35, b3 D

24 3

�1

0

35
32. [M] Let T be the transformation whose standard matrix is

given below. Find a basis for R4 with the property that �T �Bis diagonal.

A D

2664
15 �66 �44 �33

0 13 21 �15

1 �15 �21 12

2 �18 �22 8

3775
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SOLUTIONS TO PRACTICE PROBLEMS

1. Let p.t/ D a0 C a1t C a2t2 and compute

Œ T .p/ �B D Œ T �BŒ p �B D

24 3 4 0

0 5 �1

1 �2 7

3524 a0

a1

a2

35 D

24 3a0 C 4a1

5a1 � a2

a0 � 2a1 C 7a2

35
So T .p/ D .3a0 C 4a1/ C .5a1 � a2/t C .a0 � 2a1 C 7a2/t2.

2. a. A D .I /�1AI , so A is similar to A.
b. By hypothesis, there exist invertible matrices P and Q with the property that

B D P�1AP and C D Q�1BQ. Substitute the formula for B into the formula
for C , and use a fact about the inverse of a product:

C D Q�1BQ D Q�1.P�1AP/Q D .PQ/�1A.PQ/

This equation has the proper form to show that A is similar to C .

5.5 COMPLEX EIGENVALUES

Since the characteristic equation of an n � n matrix involves a polynomial of degree n,
the equation always has exactly n roots, counting multiplicities, provided that possibly
complex roots are included. This section shows that if the characteristic equation of
a real matrix A has some complex roots, then these roots provide critical information
about A. The key is to let A act on the space Cn of n-tuples of complex numbers.1

Our interest in Cn does not arise from a desire to “generalize” the results of the
earlier chapters, although that would in fact open up significant new applications of
linear algebra.2 Rather, this study of complex eigenvalues is essential in order to uncover
“hidden” information about certain matrices with real entries that arise in a variety of
real-life problems. Such problems include many real dynamical systems that involve
periodic motion, vibration, or some type of rotation in space.

The matrix eigenvalue–eigenvector theory already developed for Rn applies
equally well to Cn. So a complex scalar � satisfies det.A � �I/ D 0 if and only if there
is a nonzero vector x in Cn such that Ax D �x. We call � a (complex) eigenvalue and
x a (complex) eigenvector corresponding to �.

EXAMPLE 1 If A D

�
0 �1

1 0

�
, then the linear transformation x 7! Ax on R2

rotates the plane counterclockwise through a quarter-turn. The action of A is periodic,
since after four quarter-turns, a vector is back where it started. Obviously, no nonzero
vector is mapped into a multiple of itself, so A has no eigenvectors in R2 and hence no
real eigenvalues. In fact, the characteristic equation of A is

�2
C 1 D 0

1 Refer to Appendix B for a brief discussion of complex numbers. Matrix algebra and concepts about
real vector spaces carry over to the case with complex entries and scalars. In particular, A.cxC dy/ D

cAxC dAy, for A an m� n matrix with complex entries, x, y in Cn, and c, d in C.
2 A second course in linear algebra often discusses such topics. They are of particular importance in
electrical engineering.
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The only roots are complex: � D i and � D �i . However, if we permit A to act on C2,
then �

0 �1

1 0

��
1

�i

�
D

�
i

1

�
D i

�
1

�i

�
�

0 �1

1 0

��
1

i

�
D

�
�i

1

�
D �i

�
1

i

�

Thus i and �i are eigenvalues, with
�

1

�i

�
and

�
1

i

�
as corresponding eigenvectors.

(A method for finding complex eigenvectors is discussed in Example 2.)

The main focus of this section will be on the matrix in the next example.

EXAMPLE 2 Let A D

�
:5 �:6

:75 1:1

�
. Find the eigenvalues of A, and find a basis

for each eigenspace.
SOLUTION The characteristic equation of A is

0 D det
�

:5 � � �:6

:75 1:1 � �

�
D .:5 � �/.1:1 � �/ � .�:6/.:75/

D �2
� 1:6� C 1

From the quadratic formula, � D
1
2
Œ1:6 ˙

p
.�1:6/2 � 4� D :8 ˙ :6i . For the eigen-

value � D :8 � :6i , construct

A � .:8 � :6i/I D

�
:5 �:6

:75 1:1

�
�

�
:8 � :6i 0

0 :8 � :6i

�
D

�
�:3 C :6i �:6

:75 :3 C :6i

�
(1)

Row reduction of the usual augmented matrix is quite unpleasant by hand because of the
complex arithmetic. However, here is a nice observation that really simplifies matters:
Since :8 � :6i is an eigenvalue, the system

.�:3 C :6i/x1 � :6x2 D 0

:75x1 C .:3 C :6i/x2 D 0
(2)

has a nontrivial solution (with x1 and x2 possibly complex numbers). Therefore, both
equations in (2) determine the same relationship between x1 and x2, and either equation
can be used to express one variable in terms of the other.3

The second equation in (2) leads to
:75x1 D .�:3 � :6i/x2

x1 D .�:4 � :8i/x2

Choose x2 D 5 to eliminate the decimals, and obtain x1 D �2 � 4i . A basis for the
eigenspace corresponding to � D :8 � :6i is

v1 D

�
�2 � 4i

5

�

3 Another way to see this is to realize that the matrix in equation (1) is not invertible, so its rows are linearly
dependent (as vectors in C2/, and hence one row is a (complex) multiple of the other.
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Analogous calculations for � D :8 C :6i produce the eigenvector

v2 D

�
�2 C 4i

5

�
As a check on the work, compute

Av2 D

�
:5 �:6

:75 1:1

� �
�2 C 4i

5

�
D

�
�4 C 2i

4 C 3i

�
D .:8 C :6i/v2

Surprisingly, the matrix A in Example 2 determines a transformation x 7!Ax that
is essentially a rotation. This fact becomes evident when appropriate points are plotted.

EXAMPLE 3 One way to see how multiplication by the matrix A in Example 2
affects points is to plot an arbitrary initial point—say, x0 D .2; 0/—and then to plot
successive images of this point under repeated multiplications by A. That is, plot

x1 D Ax0 D

�
:5 �:6

:75 1:1

��
2

0

�
D

�
1:0

1:5

�
x2 D Ax1 D

�
:5 �:6

:75 1:1

��
1:0

1:5

�
D

�
�:4

2:4

�
x3 D Ax2; : : :

Figure 1 shows x0 ; : : : ; x8 as larger dots. The smaller dots are the locations of x9 ; : : : ;

x100. The sequence lies along an elliptical orbit.

x1

x2

x2x3

x4

x5

x6

x7
x8

x1

x0

FIGURE 1 Iterates of a point x0

under the action of a matrix with a
complex eigenvalue.

Of course, Figure 1 does not explain why the rotation occurs. The secret to the
rotation is hidden in the real and imaginary parts of a complex eigenvector.

Real and Imaginary Parts of Vectors
The complex conjugate of a complex vector x in Cn is the vector x in Cn whose entries
are the complex conjugates of the entries in x. The real and imaginary parts of a
complex vector x are the vectors Re x and Im x in Rn formed from the real and imaginary
parts of the entries of x.
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EXAMPLE 4 If x D

24 3 � i

i

2 C 5i

35 D

24 3

0

2

35C i

24�1

1

5

35, then

Re x D

24 3

0

2

35; Im x D

24�1

1

5

35; and x D

24 3

0

2

35 � i

24�1

1

5

35 D

24 3 C i

�i

2 � 5i

35
If B is an m � n matrix with possibly complex entries, then B denotes the matrix

whose entries are the complex conjugates of the entries in B . Properties of conjugates
for complex numbers carry over to complex matrix algebra:

rx D r x; Bx D B x; BC D B C ; and rB D r B

Eigenvalues and Eigenvectors of a Real Matrix
That Acts on Cn

Let A be an n � n matrix whose entries are real. Then Ax D Ax D Ax. If � is an
eigenvalue of A and x is a corresponding eigenvector in Cn, then

Ax D Ax D �x D �x

Hence � is also an eigenvalue of A, with x a corresponding eigenvector. This shows that
when A is real, its complex eigenvalues occur in conjugate pairs. (Here and elsewhere,
we use the term complex eigenvalue to refer to an eigenvalue � D a C bi , with b ¤ 0.)

EXAMPLE 5 The eigenvalues of the real matrix in Example 2 are complex conju-
gates, namely, :8 � :6i and :8 C :6i . The corresponding eigenvectors found in Exam-
ple 2 are also conjugates:

v1 D

�
�2 � 4i

5

�
and v2 D

�
�2 C 4i

5

�
D v1

The next example provides the basic “building block” for all real 2 � 2 matrices
with complex eigenvalues.

EXAMPLE 6 If C D

�
a �b

b a

�
, where a and b are real and not both zero, then the

eigenvalues of C are � D a ˙ bi . (See the Practice Problem at the end of this section.)
Also, if r D j�j D

p
a2 C b2, then

C D r

�
a=r �b=r

b=r a=r

�
D

�
r 0

0 r

�� cos ' � sin '

sin ' cos '

�
where ' is the angle between the positive x-axis and the ray from .0; 0/ through .a; b/.
See Figure 2 and Appendix B. The angle ' is called the argument of � D a C bi . Thus
the transformation x 7!C x may be viewed as the composition of a rotation through the
angle ' and a scaling by j�j (see Figure 3).

b

(a, b)

a

ϕ
r

Re z

Im z

FIGURE 2

Finally, we are ready to uncover the rotation that is hidden within a real matrix
having a complex eigenvalue.
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x2

x1

Ax

x

ϕ

Scaling

Rotation

FIGURE 3 A rotation followed by a
scaling.

EXAMPLE 7 Let A D

�
:5 �:6

:75 1:1

�
, � D :8 � :6i , and v1 D

�
�2 � 4i

5

�
, as in

Example 2. Also, let P be the 2 � 2 real matrix
P D

�Re v1 Im v1

�
D

�
�2 �4

5 0

�
and let

C D P�1AP D
1

20

�
0 4

�5 �2

��
:5 �:6

:75 1:1

��
�2 �4

5 0

�
D

�
:8 �:6

:6 :8

�
By Example 6, C is a pure rotation because j�j2 D .:8/2 C .:6/2 D 1. From
C D P�1AP, we obtain

A D P CP�1
D P

�
:8 �:6

:6 :8

�
P�1

Here is the rotation “inside” A! The matrix P provides a change of variable, say,
x D P u. The action of A amounts to a change of variable from x to u, followed by
a rotation, and then a return to the original variable. See Figure 4. The rotation produces
an ellipse, as in Figure 1, instead of a circle, because the coordinate system determined
by the columns of P is not rectangular and does not have equal unit lengths on the two
axes.

P–1

A

P

Ax

Cuu

x

Change of
variable

Change of
variable

C
Rotation

FIGURE 4 Rotation due to a complex eigenvalue.

The next theorem shows that the calculations in Example 7 can be carried out for
any 2 � 2 real matrix A having a complex eigenvalue �. The proof uses the fact that if
the entries in A are real, then A.Re x/ D Re.Ax/ and A.Im x/ D Im.Ax/, and if x is an
eigenvector for a complex eigenvalue, then Re x and Im x are linearly independent in
R2. (See Exercises 25 and 26.) The details are omitted.

THEOREM 9 Let A be a real 2 � 2 matrix with a complex eigenvalue � D a � bi (b ¤ 0) and
an associated eigenvector v in C2. Then

A D PCP�1; where P D Œ Re v Im v � and C D

�
a �b

b a

�
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The phenomenon displayed in Example 7 persists in higher dimensions. For

w0 w1

w2 x2

x1

w10

x3

x0

x10

x1

x2

FIGURE 5

Iterates of two points under the
action of a 3 � 3 matrix with a
complex eigenvalue.

instance, if A is a 3 � 3 matrix with a complex eigenvalue, then there is a plane in
R3 on which A acts as a rotation (possibly combined with scaling). Every vector in that
plane is rotated into another point on the same plane. We say that the plane is invariant
under A.

EXAMPLE 8 The matrix A D

24 :8 �:6 0

:6 :8 0

0 0 1:07

35 has eigenvalues :8 ˙ :6i and

1.07. Any vector w0 in the x1x2-plane (with third coordinate 0) is rotated by A into
another point in the plane. Any vector x0 not in the plane has its x3-coordinate multiplied
by 1.07. The iterates of the points w0 D .2; 0; 0/ and x0 D .2; 0; 1/ under multiplication
by A are shown in Figure 5.

PRACTICE PROBLEM

Show that if a and b are real, then the eigenvalues of A D

�
a �b

b a

�
are a ˙ bi , with

corresponding eigenvectors
�

1

�i

�
and

�
1

i

�
.

5.5 EXERCISES
Let each matrix in Exercises 1–6 act on C2. Find the eigenvalues
and a basis for each eigenspace in C2.

1.
�

1 �2

1 3

�
2.

�
5 �5

1 1

�

3.
�

1 5

�2 3

�
4.

�
5 �2

1 3

�

5.
�

0 1

�8 4

�
6.

�
4 3

�3 4

�
In Exercises 7–12, use Example 6 to list the eigenvalues of A.
In each case, the transformation x 7! Ax is the composition of
a rotation and a scaling. Give the angle ' of the rotation, where
�� < ' � � , and give the scale factor r .

7.
�p

3 �1

1
p

3

�
8.

�p
3 3

�3
p

3

�

9.
�

�
p

3=2 1=2

�1=2 �
p

3=2

�
10.

�
�5 �5

5 �5

�

11.
�

:1 :1

�:1 :1

�
12.

�
0 :3

�:3 0

�
In Exercises 13–20, find an invertible matrix P and a matrix
C of the form

�
a �b

b a

�
such that the given matrix has the

form A D P CP�1. For Exercises 13–16, use information from
Exercises 1–4.

13.
�

1 �2

1 3

�
14.

�
5 �5

1 1

�

15.
�

1 5

�2 3

�
16.

�
5 �2

1 3

�

17.
�

1 �:8

4 �2:2

�
18.

�
1 �1

:4 :6

�

19.
�

1:52 �:7

:56 :4

�
20.

�
�1:64 �2:4

1:92 2:2

�
21. In Example 2, solve the first equation in (2) for x2 in terms of

x1, and from that produce the eigenvector y D

�
2

�1 C 2i

�
for the matrix A. Show that this y is a (complex) multiple of
the vector v1 used in Example 2.

22. Let A be a complex (or real) n � n matrix, and let x in Cn be
an eigenvector corresponding to an eigenvalue � in C. Show
that for each nonzero complex scalar �, the vector �x is an
eigenvector of A.

Chapter 7 will focus on matrices A with the property that AT D A.
Exercises 23 and 24 show that every eigenvalue of such a matrix
is necessarily real.
23. Let A be an n � n real matrix with the property that AT D A,

let x be any vector in Cn, and let q D xTAx. The equalities
below show that q is a real number by verifying that q D q.
Give a reason for each step.
q D xTAx D xTAx D xTAx D .xTAx/T D xTAT x D q

(a) (b) (c) (d) (e)
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24. Let A be an n � n real matrix with the property that AT D A.
Show that if Ax D �x for some nonzero vector x in Cn, then,
in fact, � is real and the real part of x is an eigenvector of A.
[Hint: Compute xTAx, and use Exercise 23. Also, examine
the real and imaginary parts of Ax.]

25. Let A be a real n � n matrix, and let x be a vector in Cn. Show
that Re.Ax/ D A.Re x/ and Im.Ax/ D A.Im x/.

26. Let A be a real 2 � 2 matrix with a complex eigenvalue
� D a � bi (b ¤ 0) and an associated eigenvector v in C2.
a. Show that A.Re v/ D a Re v C b Im v and A.Im v/ D

�b Re v C a Im v. [Hint: Write v D Re v C i Im v, and
compute Av.]

b. Verify that if P and C are given as in Theorem 9, then
AP D P C .

[M] In Exercises 27 and 28, find a factorization of the given
matrix A in the form A D P CP�1, where C is a block-diagonal
matrix with 2 � 2 blocks of the form shown in Example 6. (For
each conjugate pair of eigenvalues, use the real and imaginary
parts of one eigenvector in C4 to create two columns of P .)

27.

2664
:7 1:1 2:0 1:7

�2:0 �4:0 �8:6 �7:4

0 �:5 �1:0 �1:0

1:0 2:8 6:0 5:3

3775

28.

2664
�1:4 �2:0 �2:0 �2:0

�1:3 �:8 �:1 �:6

:3 �1:9 �1:6 �1:4

2:0 3:3 2:3 2:6

3775

SOLUTION TO PRACTICE PROBLEM

Remember that it is easy to test whether a vector is an eigenvector. There is no need to
examine the characteristic equation. Compute

Ax D

�
a �b

b a

��
1

�i

�
D

�
a C bi

b � ai

�
D .a C bi/

�
1

�i

�

Thus
�

1

�i

�
is an eigenvector corresponding to � D a C bi . From the discussion in this

section,
�

1

i

�
must be an eigenvector corresponding to � D a � bi .

5.6 DISCRETE DYNAMICAL SYSTEMS

Eigenvalues and eigenvectors provide the key to understanding the long-term behavior,
or evolution, of a dynamical system described by a difference equation xkC1 D Axk .
Such an equation was used to model population movement in Section 1.10, various
Markov chains in Section 4.9, and the spotted owl population in the introductory
example for this chapter. The vectors xk give information about the system as time
(denoted by k) passes. In the spotted owl example, for instance, xk listed the numbers
of owls in three age classes at time k.

The applications in this section focus on ecological problems because they are easier
to state and explain than, say, problems in physics or engineering. However, dynamical
systems arise in many scientific fields. For instance, standard undergraduate courses
in control systems discuss several aspects of dynamical systems. The modern state-
space design method in such courses relies heavily on matrix algebra.1 The steady-state
response of a control system is the engineering equivalent of what we call here the
“long-term behavior” of the dynamical system xkC1 D Axk .

1 See G. F. Franklin, J. D. Powell, and A. Emami-Naeimi, Feedback Control of Dynamic Systems, 5th ed.
(Upper Saddle River, NJ: Prentice-Hall, 2006). This undergraduate text has a nice introduction to dynamic
models (Chapter 2). State-space design is covered in Chapters 7 and 8.
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Until Example 6, we assume that A is diagonalizable, with n linearly indepen-
dent eigenvectors, v1; : : : ; vn, and corresponding eigenvalues, �1; : : : ; �n. For conve-
nience, assume the eigenvectors are arranged so that j�1j � j�2j � � � � � j�nj. Since
fv1; : : : ; vng is a basis for Rn, any initial vector x0 can be written uniquely as

x0 D c1v1 C � � � C cnvn (1)
This eigenvector decomposition of x0 determines what happens to the sequence fxkg.
The next calculation generalizes the simple case examined in Example 5 of Section 5.2.
Since the vi are eigenvectors,

x1 D Ax0 D c1Av1 C � � � C cnAvn

D c1�1v1 C � � � C cn�nvn

In general,
xk D c1.�1/kv1 C � � � C cn.�n/kvn .k D 0; 1; 2; : : :/ (2)

The examples that follow illustrate what can happen in (2) as k ! 1.

A Predator–Prey System
Deep in the redwood forests of California, dusky-footed wood rats provide up to 80% of
the diet for the spotted owl, the main predator of the wood rat. Example 1 uses a linear
dynamical system to model the physical system of the owls and the rats. (Admittedly,
the model is unrealistic in several respects, but it can provide a starting point for the
study of more complicated nonlinear models used by environmental scientists.)

EXAMPLE 1 Denote the owl and wood rat populations at time k by xk D

�
Ok

Rk

�
,

where k is the time in months, Ok is the number of owls in the region studied, and Rk

is the number of rats (measured in thousands). Suppose
OkC1 D .:5/Ok C .:4/Rk

RkC1 D �p � Ok C .1:1/Rk

(3)

where p is a positive parameter to be specified. The .:5/Ok in the first equation says
that with no wood rats for food, only half of the owls will survive each month, while the
.1:1/Rk in the second equation says that with no owls as predators, the rat population
will grow by 10% per month. If rats are plentiful, the .:4/Rk will tend to make the
owl population rise, while the negative term �p � Ok measures the deaths of rats due
to predation by owls. (In fact, 1000p is the average number of rats eaten by one owl in
one month.) Determine the evolution of this system when the predation parameter p is
.104.
SOLUTION When p D :104, the eigenvalues of the coefficient matrix A for the equa-
tions in (3) turn out to be �1 D 1:02 and �2 D :58. Corresponding eigenvectors are

v1 D

�
10

13

�
; v2 D

�
5

1

�
An initial x0 can be written as x0 D c1v1 C c2v2. Then, for k � 0,

xk D c1.1:02/kv1 C c2.:58/kv2

D c1.1:02/k

�
10

13

�
C c2.:58/k

�
5

1

�
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5.6 Discrete Dynamical Systems 305

As k ! 1, .:58/k rapidly approaches zero. Assume c1 > 0. Then, for all sufficiently
large k, xk is approximately the same as c1.1:02/kv1, and we write

xk � c1.1:02/k

�
10

13

�
(4)

The approximation in (4) improves as k increases, and so for large k,

xkC1 � c1.1:02/kC1

�
10

13

�
D .1:02/c1.1:02/k

�
10

13

�
� 1:02xk (5)

The approximation in (5) says that eventually both entries of xk (the numbers of owls
and rats) grow by a factor of almost 1.02 each month, a 2% monthly growth rate. By
(4), xk is approximately a multiple of .10; 13/, so the entries in xk are nearly in the same
ratio as 10 to 13. That is, for every 10 owls there are about 13 thousand rats.

Example 1 illustrates two general facts about a dynamical system xkC1 D Axk in
which A is n � n, its eigenvalues satisfy j�1j � 1 and 1 > j�j j for j D 2; : : : ; n, and v1

is an eigenvector corresponding to �1. If x0 is given by equation (1), with c1 ¤ 0, then
for all sufficiently large k,

xkC1 � �1xk (6)
and

xk � c1.�1/kv1 (7)
The approximations in (6) and (7) can be made as close as desired by taking k

sufficiently large. By (6), the xk eventually grow almost by a factor of �1 each time,
so �1 determines the eventual growth rate of the system. Also, by (7), the ratio of any
two entries in xk (for large k) is nearly the same as the ratio of the corresponding entries
in v1. The case in which �1 D 1 is illustrated in Example 5 in Section 5.2.

Graphical Description of Solutions
When A is 2 � 2, algebraic calculations can be supplemented by a geometric description
of a system’s evolution. We can view the equation xkC1 D Axk as a description of what
happens to an initial point x0 in R2 as it is transformed repeatedly by the mapping
x 7!Ax. The graph of x0; x1; : : : is called a trajectory of the dynamical system.

EXAMPLE 2 Plot several trajectories of the dynamical system xkC1 D Axk , when

A D

�
:80 0

0 :64

�

SOLUTION The eigenvalues of A are .8 and .64, with eigenvectors v1 D

�
1

0

�
and

v2 D

�
0

1

�
. If x0 D c1v1 C c2v2, then

xk D c1.:8/k

�
1

0

�
C c2.:64/k

�
0

1

�
Of course, xk tends to 0 because .:8/k and .:64/k both approach 0 as k ! 1. But the way
xk goes toward 0 is interesting. Figure 1 shows the first few terms of several trajectories
that begin at points on the boundary of the box with corners at .˙3; ˙3/. The points on
each trajectory are connected by a thin curve, to make the trajectory easier to see.
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x2

x1

x1

x2

x0

x2

x1

x0

x2

x1

x0

3

3

FIGURE 1 The origin as an attractor.

In Example 2, the origin is called an attractor of the dynamical system because
all trajectories tend toward 0. This occurs whenever both eigenvalues are less than 1
in magnitude. The direction of greatest attraction is along the line through 0 and the
eigenvector v2 for the eigenvalue of smaller magnitude.

In the next example, both eigenvalues of A are larger than 1 in magnitude, and 0
is called a repeller of the dynamical system. All solutions of xkC1 D Axk except the
(constant) zero solution are unbounded and tend away from the origin.2

x1

x2

FIGURE 2 The origin as a repeller.

EXAMPLE 3 Plot several typical solutions of the equation xkC1 D Axk , where

A D

�
1:44 0

0 1:2

�
2 The origin is the only possible attractor or repeller in a linear dynamical system, but there can be multiple
attractors and repellers in a more general dynamical system for which the mapping xk 7! xkC1 is not linear.
In such a system, attractors and repellers are defined in terms of the eigenvalues of a special matrix (with
variable entries) called the Jacobian matrix of the system.
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SOLUTION The eigenvalues of A are 1.44 and 1.2. If x0 D

�
c1

c2

�
, then

xk D c1.1:44/k

�
1

0

�
C c2.1:2/k

�
0

1

�
Both terms grow in size, but the first term grows faster. So the direction of greatest re-
pulsion is the line through 0 and the eigenvector for the eigenvalue of larger magnitude.
Figure 2 shows several trajectories that begin at points quite close to 0.

In the next example, 0 is called a saddle point because the origin attracts solutions
from some directions and repels them in other directions. This occurs whenever one
eigenvalue is greater than 1 in magnitude and the other is less than 1 in magnitude. The
direction of greatest attraction is determined by an eigenvector for the eigenvalue of
smaller magnitude. The direction of greatest repulsion is determined by an eigenvector
for the eigenvalue of greater magnitude.

EXAMPLE 4 Plot several typical solutions of the equation ykC1 D Dyk , where

D D

�
2:0 0

0 0:5

�
(We write D and y here instead of A and x because this example will be used later.)
Show that a solution fykg is unbounded if its initial point is not on the x2-axis.

SOLUTION The eigenvalues of D are 2 and .5. If y0 D

�
c1

c2

�
, then

yk D c12k

�
1

0

�
C c2.:5/k

�
0

1

�
(8)

If y0 is on the x2-axis, then c1 D 0 and yk ! 0 as k ! 1. But if y0 is not on the x2-axis,
then the first term in the sum for yk becomes arbitrarily large, and so fykg is unbounded.
Figure 3 shows ten trajectories that begin near or on the x2-axis.

x3

x2

x1

x1

x2

x0

x3
x2

x1

x0

FIGURE 3 The origin as a saddle point.
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Change of Variable
The preceding three examples involved diagonal matrices. To handle the nondiagonal
case, we return for a moment to the n � n case in which eigenvectors of A form a
basis fv1; : : : ; vng for Rn. Let P D Œ v1 � � � vn �, and let D be the diagonal matrix
with the corresponding eigenvalues on the diagonal. Given a sequence fxkg satisfying
xkC1 D Axk , define a new sequence fykg by

yk D P�1xk ; or equivalently; xk D P yk

Substituting these relations into the equation xkC1 D Axk and using the fact that A D

PDP�1, we find that
P ykC1 D APyk D .PDP�1/P yk D PDyk

Left-multiplying both sides by P�1, we obtain
ykC1 D Dyk

If we write yk as y.k/ and denote the entries in y.k/ by y1.k/; : : : ; yn.k/, then266664
y1.k C 1/

y2.k C 1/
:::

yn.k C 1/

377775 D

266664
�1 0 � � � 0

0 �2

:::
:::

: : : 0

0 � � � 0 �n

377775
266664

y1.k/

y2.k/
:::

yn.k/

377775
The change of variable from xk to yk has decoupled the system of difference equations.
The evolution of y1.k/, for example, is unaffected by what happens to y2.k/; : : : ; yn.k/,
because y1.k C 1/ D �1 � y1.k/ for each k.

The equation xk D P yk says that yk is the coordinate vector of xk with respect to
the eigenvector basis fv1; : : : ; vng. We can decouple the system xkC1 D Axk by making
calculations in the new eigenvector coordinate system. When n D 2, this amounts to
using graph paper with axes in the directions of the two eigenvectors.

EXAMPLE 5 Show that the origin is a saddle point for solutions of xkC1 D Axk ,
where

A D

�
1:25 �:75

�:75 1:25

�
Find the directions of greatest attraction and greatest repulsion.
SOLUTION Using standard techniques, we find that A has eigenvalues 2 and .5, with
corresponding eigenvectors v1 D

�
1

�1

�
and v2 D

�
1

1

�
, respectively. Since j2j > 1 and

j:5j < 1, the origin is a saddle point of the dynamical system. If x0 D c1v1 C c2v2, then
xk D c12kv1 C c2.:5/kv2 (9)

This equation looks just like equation (8) in Example 4, with v1 and v2 in place of the
standard basis.

On graph paper, draw axes through 0 and the eigenvectors v1 and v2. See Figure 4.
Movement along these axes corresponds to movement along the standard axes in
Figure 3. In Figure 4, the direction of greatest repulsion is the line through 0 and the
eigenvector v1 whose eigenvalue is greater than 1 in magnitude. If x0 is on this line, the
c2 in (9) is zero and xk moves quickly away from 0. The direction of greatest attraction
is determined by the eigenvector v2 whose eigenvalue is less than 1 in magnitude.

A number of trajectories are shown in Figure 4. When this graph is viewed in
terms of the eigenvector axes, the picture “looks” essentially the same as the picture
in Figure 3.
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x3

x2

v2

v1

x1

x

y

x0

x3

x2
x1

x0

FIGURE 4 The origin as a saddle point.

Complex Eigenvalues
When a real 2 � 2 matrix A has complex eigenvalues, A is not diagonalizable (when
acting on R2/, but the dynamical system xkC1 D Axk is easy to describe. Example 3
of Section 5.5 illustrated the case in which the eigenvalues have absolute value 1. The
iterates of a point x0 spiraled around the origin along an elliptical trajectory.

If A has two complex eigenvalues whose absolute value is greater than 1, then 0 is
a repeller and iterates of x0 will spiral outward around the origin. If the absolute values
of the complex eigenvalues are less than 1, then the origin is an attractor and the iterates
of x0 spiral inward toward the origin, as in the following example.

EXAMPLE 6 It can be verified that the matrix

A D

�
:8 :5

�:1 1:0

�

has eigenvalues :9 ˙ :2i , with eigenvectors
�

1 � 2i

1

�
. Figure 5 shows three trajectories

of the system xkC1 D Axk , with initial vectors
�

0

2:5

�
,
�

3

0

�
, and

�
0

�2:5

�
.

Survival of the Spotted Owls
Recall from this chapter’s introductory example that the spotted owl population in the
Willow Creek area of California was modeled by a dynamical system xkC1 D Axk in
which the entries in xk D .jk ; sk ; ak/ listed the numbers of females (at time k) in the
juvenile, subadult, and adult life stages, respectively, and A is the stage-matrix

A D

24 0 0 :33

:18 0 0

0 :71 :94

35 (10)

SECOND REVISED PAGES



310 CHAPTER 5 Eigenvalues and Eigenvectors

x3 x2 x1

x3
x2

x1

x1

x2

x0

x0

x3

x2
x1

x0

FIGURE 5 Rotation associated with complex
eigenvalues.

MATLAB shows that the eigenvalues of A are approximately �1 D :98,
�2 D �:02 C :21i , and �3 D �:02 � :21i . Observe that all three eigenvalues are
less than 1 in magnitude, because j�2j

2 D j�3j2 D .�:02/2 C .:21/2 D :0445.
For the moment, let A act on the complex vector space C3. Then, because A has

three distinct eigenvalues, the three corresponding eigenvectors are linearly independent
and form a basis for C3. Denote the eigenvectors by v1, v2, and v3. Then the general
solution of xkC1 D Axk (using vectors in C3) has the form

xk D c1.�1/
kv1 C c2.�2/kv2 C c3.�3/kv3 (11)

If x0 is a real initial vector, then x1 D Ax0 is real because A is real. Similarly, the
equation xkC1 D Axk shows that each xk on the left side of (11) is real, even though
it is expressed as a sum of complex vectors. However, each term on the right side
of (11) is approaching the zero vector, because the eigenvalues are all less than 1 in
magnitude. Therefore the real sequence xk approaches the zero vector, too. Sadly, this
model predicts that the spotted owls will eventually all perish.

Is there hope for the spotted owl? Recall from the introductory example that the
18% entry in the matrix A in (10) comes from the fact that although 60% of the juvenile
owls live long enough to leave the nest and search for new home territories, only 30%
of that group survive the search and find new home ranges. Search survival is strongly
influenced by the number of clear-cut areas in the forest, which make the search more
difficult and dangerous.

Some owl populations live in areas with few or no clear-cut areas. It may be that
a larger percentage of the juvenile owls there survive and find new home ranges. Of
course, the problem of the spotted owl is more complex than we have described, but the
final example provides a happy ending to the story.

EXAMPLE 7 Suppose the search survival rate of the juvenile owls is 50%, so the
.2; 1/-entry in the stage-matrix A in (10) is .3 instead of .18. What does the stage-matrix
model predict about this spotted owl population?
SOLUTION Now the eigenvalues of A turn out to be approximately �1 D 1:01, �2 D

�:03 C :26i , and �3 D �:03 � :26i . An eigenvector for �1 is approximately v1 D

.10; 3; 31/. Let v2 and v3 be (complex) eigenvectors for �2 and �3. In this case,
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equation (11) becomes
xk D c1.1:01/kv1 C c2.�:03 C :26i/kv2 C c3.�:03 � :26i/kv3

As k ! 1, the second two vectors tend to zero. So xk becomes more and more like
the (real) vector c1.1:01/kv1. The approximations in equations (6) and (7), following
Example 1, apply here. Also, it can be shown that the constant c1 in the initial
decomposition of x0 is positive when the entries in x0 are nonnegative. Thus the owl
population will grow slowly, with a long-term growth rate of 1.01. The eigenvector v1

describes the eventual distribution of the owls by life stages: for every 31 adults, there
will be about 10 juveniles and 3 subadults.

Further Reading
Franklin, G. F., J. D. Powell, and M. L. Workman. Digital Control of Dynamic Systems,
3rd ed. Reading, MA: Addison-Wesley, 1998.
Sandefur, James T. Discrete Dynamical Systems—Theory and Applications. Oxford:
Oxford University Press, 1990.
Tuchinsky, Philip. Management of a Buffalo Herd, UMAP Module 207. Lexington, MA:
COMAP, 1980.

PRACTICE PROBLEMS

1. The matrix A below has eigenvalues 1, 2
3
, and 1

3
, with corresponding eigenvectors

v1, v2, and v3:

A D
1

9

24 7 �2 0

�2 6 2

0 2 5

35; v1 D

24�2

2

1

35; v2 D

24 2

1

2

35; v3 D

24 1

2

�2

35

Find the general solution of the equation xkC1 D Axk if x0 D

24 1

11

�2

35.

2. What happens to the sequence fxkg in Practice Problem 1 as k ! 1?

5.6 EXERCISES
1. Let A be a 2 � 2 matrix with eigenvalues 3 and 1=3 and

corresponding eigenvectors v1 D

�
1

1

�
and v2 D

�
�1

1

�
. Let

fxkg be a solution of the difference equation xkC1 D Axk ,
x0 D

�
9

1

�
.

a. Compute x1 D Ax0. [Hint: You do not need to know A

itself.]
b. Find a formula for xk involving k and the eigenvectors v1

and v2.

2. Suppose the eigenvalues of a 3 � 3 matrix A are 3, 4=5, and

3=5, with corresponding eigenvectors
24 1

0

�3

35,
24 2

1

�5

35, and
24�3

�3

7

35. Let x0 D

24�2

�5

3

35. Find the solution of the equation

xkC1 D Axk for the specified x0, and describe what happens
as k ! 1.
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In Exercises 3–6, assume that any initial vector x0 has an eigen-
vector decomposition such that the coefficient c1 in equation (1)
of this section is positive.3

3. Determine the evolution of the dynamical system in Exam-
ple 1 when the predation parameter p is .2 in equation (3).
(Give a formula for xk :/ Does the owl population grow or
decline? What about the wood rat population?

4. Determine the evolution of the dynamical system in Example
1 when the predation parameter p is :125. (Give a formula
for xk .) As time passes, what happens to the sizes of the owl
and wood rat populations? The system tends toward what is
sometimes called an unstable equilibrium. What do you think
might happen to the system if some aspect of the model (such
as birth rates or the predation rate) were to change slightly?

5. In old-growth forests of Douglas fir, the spotted owl dines
mainly on flying squirrels. Suppose the predator–prey matrix
for these two populations is A D

�
:4 :3

�p 1:2

�
. Show that

if the predation parameter p is .325, both populations grow.
Estimate the long-term growth rate and the eventual ratio of
owls to flying squirrels.

6. Show that if the predation parameter p in Exercise 5 is .5,
both the owls and the squirrels will eventually perish. Find a
value of p for which populations of both owls and squirrels
tend toward constant levels. What are the relative population
sizes in this case?

7. Let A have the properties described in Exercise 1.
a. Is the origin an attractor, a repeller, or a saddle point of

the dynamical system xkC1 D Axk?
b. Find the directions of greatest attraction and/or repulsion

for this dynamical system.
c. Make a graphical description of the system, showing

the directions of greatest attraction or repulsion. Include
a rough sketch of several typical trajectories (without
computing specific points).

8. Determine the nature of the origin (attractor, repeller, or
saddle point) for the dynamical system xkC1 D Axk if A has
the properties described in Exercise 2. Find the directions of
greatest attraction or repulsion.

In Exercises 9–14, classify the origin as an attractor, repeller,
or saddle point of the dynamical system xkC1 D Axk . Find the
directions of greatest attraction and/or repulsion.

9. A D

�
1:7 �:3

�1:2 :8

�
10. A D

�
:3 :4

�:3 1:1

�

3 One of the limitations of the model in Example 1 is that there always exist
initial population vectors x0 with positive entries such that the coefficient
c1 is negative. The approximation (7) is still valid, but the entries in xk

eventually become negative.

11. A D

�
:4 :5

�:4 1:3

�
12. A D

�
:5 :6

�:3 1:4

�

13. A D

�
:8 :3

�:4 1:5

�
14. A D

�
1:7 :6

�:4 :7

�

15. Let A D

24 :4 0 :2

:3 :8 :3

:3 :2 :5

35. The vector v1 D

24 :1

:6

:3

35 is an

eigenvector for A, and two eigenvalues are .5 and .2. Con-
struct the solution of the dynamical system xkC1 D Axk that
satisfies x0 D .0; :3; :7/. What happens to xk as k ! 1?

16. [M] Produce the general solution of the dynamical system
xkC1 D Axk when A is the stochastic matrix for the Hertz
Rent A Car model in Exercise 16 of Section 4.9.

17. Construct a stage-matrix model for an animal species that has
two life stages: juvenile (up to 1 year old) and adult. Suppose
the female adults give birth each year to an average of 1.6
female juveniles. Each year, 30% of the juveniles survive
to become adults and 80% of the adults survive. For k � 0,
let xk D .jk ; ak/, where the entries in xk are the numbers of
female juveniles and female adults in year k.
a. Construct the stage-matrix A such that xkC1 D Axk for

k � 0.
b. Show that the population is growing, compute the even-

tual growth rate of the population, and give the eventual
ratio of juveniles to adults.

c. [M] Suppose that initially there are 15 juveniles and 10
adults in the population. Produce four graphs that show
how the population changes over eight years: (a) the
number of juveniles, (b) the number of adults, (c) the
total population, and (d) the ratio of juveniles to adults
(each year). When does the ratio in (d) seem to stabilize?
Include a listing of the program or keystrokes used to
produce the graphs for (c) and (d).

18. A herd of American buffalo (bison) can be modeled by a stage
matrix similar to that for the spotted owls. The females can be
divided into calves (up to 1 year old), yearlings (1 to 2 years),
and adults. Suppose an average of 42 female calves are
born each year per 100 adult females. (Only adults produce
offspring.) Each year, about 60% of the calves survive, 75%
of the yearlings survive, and 95% of the adults survive. For
k � 0, let xk D .ck ; yk ; ak/, where the entries in xk are the
numbers of females in each life stage at year k.
a. Construct the stage-matrix A for the buffalo herd, such

that xkC1 D Axk for k � 0.
b. [M] Show that the buffalo herd is growing, determine

the expected growth rate after many years, and give the
expected numbers of calves and yearlings present per 100
adults.
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SOLUTIONS TO PRACTICE PROBLEMS

1. The first step is to write x0 as a linear combination of v1, v2, and v3. Row reduction
of Œ v1 v2 v3 x0 � produces the weights c1 D 2, c2 D 1, and c3 D 3, so that

x0 D 2v1 C 1v2 C 3v3

Since the eigenvalues are 1, 2
3
, and 1

3
, the general solution is

xk D 2 � 1kv1 C 1 �

�
2

3

�k

v2 C 3 �

�
1

3

�k

v3

D 2

24�2

2

1

35C

�
2

3

�k

24 2

1

2

35C 3 �

�
1

3

�k

24 1

2

�2

35 (12)

2. As k ! 1, the second and third terms in (12) tend to the zero vector, and

xk D 2v1 C

�
2

3

�k

v2 C 3

�
1

3

�k

v3 ! 2v1 D

24�4

4

2

35

5.7 APPLICATIONS TO DIFFERENTIAL EQUATIONS

This section describes continuous analogues of the difference equations studied in
Section 5.6. In many applied problems, several quantities are varying continuously in
time, and they are related by a system of differential equations:

x01 D a11x1 C � � � C a1nxn

x02 D a21x1 C � � � C a2nxn

:::

x0n D an1x1 C � � � C annxn

Here x1; : : : ; xn are differentiable functions of t , with derivatives x01; : : : ; x0n, and the aij

are constants. The crucial feature of this system is that it is linear. To see this, write the
system as a matrix differential equation

x0.t/ D Ax.t/ (1)
where

x.t/ D

264 x1.t/
:::

xn.t/

375 ; x0.t/ D

264 x01.t/
:::

x0n.t/

375 ; and A D

264 a11 � � � a1n
:::

:::

an1 � � � ann

375
A solution of equation (1) is a vector-valued function that satisfies (1) for all t in some
interval of real numbers, such as t � 0.

Equation (1) is linear because both differentiation of functions and multiplication of
vectors by a matrix are linear transformations. Thus, if u and v are solutions of x0 D Ax,
then cu C dv is also a solution, because

.cu C dv/0 D cu0 C dv0
D cAu C dAv D A.cu C dv/
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