PREDICTING ZILLOW.COM -ZESTIMATE'S ACCURACY

<u>Group – 6</u>

- Sirisha Kilambi
- Pramod Mane
- Beena Nair
- Mehul Shah
- Tabrez Shaikh

Agenda

- Introduction
- Data Collection & Description
- Exploratory Analysis
- Modeling Methods
- Results
- Conclusion
- Questions

Introduction

Background

- Housing has been the root cause behind the current recession which is worst ever, next only to great Depression
- Recovery hinges on housing which in turn depends on buyers & sellers getting the right deal in right timeframe.

Core Idea

- "Zillow.com" is the real estate service launched in 2006
- Zillow calculates a Zestimate ⁻ home valuation as a starting point for anyone to see — for free — for most homes in the U.S
- Zillow indicates that for MD and VA they get only about 26% of predictions within the +/-5% range only.

<u>Goal:</u> To create a **Predictive** model that will provide the buyers and sellers with a tool to assess if zillow's estimate is reliable for the house they are trying to list or Buy.

Data Collection & Description

Collection

•Data collected, cleansed and merged from 4 sources – Zillow , Redfin, School Digger and Google Maps

•17 counties (29 Zip codes) in Northern VA

<u>House sales data</u>

Before Data Clean up: 3500+

After Data Clean up: 1416

Y – *Is Zestimate correct* (Y/N) 37.6%/62.43%

X – 15 variables (5+ variables where discarded from initial set)

<u>Data Fields – X's</u>

- 1. Home Type (Single Family, Condo , etc)
- 2. No of Bed Rooms
- 3. No of Bath Rooms
- 4. Total Area Sqft
- 5. Lot size Sqft
- 6. No of Stories
- 7. Total Rooms
- 8. Distance from Metro
- 9. Primary School Rank
- 10. Middle School Rank
- 11. High School Rank
- 12. Age of house at Sale
- 13. Sale Season (Fall , Winter , etc)
- 14. Recession Period (Y/N)
- 15. Sales Volume

Exploratory Analysis

Box Plots for 6 Promising Variables

Exploratory Analysis

Scatter Plot - Lot Size Vs. SQFT

Modeling Methods - Classification

Data Exploration – Box Plots , Summary Statistics, Scatter Plots , Bar Charts

Data Preprocessing - Derived Variables, Log of variables.

Classification Tree - Top Variables – Lot Size & Distance from Metro

Principal Component Analysis –

Data Exploration – Scatter Plots and Box Plots

Discriminant Analysis

Logistic Regression - 2nd Best

KNN - **Best**

Data Exploration

Naïve Bayes wasn't used since all our X's are numerical in nature.

Criteria for Model Application & Selection

- Unbiased Perspective symmetric missclassification cost
- Lower error rate compared to the Naïve rule applied to the same test data.
- Parsimony of models with equivalent error rates
- Inclusion of Variables (X's) based on Availability and relevance at the time of prediction

 Data Partitioning – Training/Validation/Test – 60:20:20 KNN and Classification Tree

Top 2 Models

2. Logistic Regression

Test Data scoring - Summary Report – Logistic Regression

Cut off Prob	0.5				
Classification Con					
Predicted Class					
Actual Class	FALSE	TRUE			
FALSE	162	22			
TRUE	71	28			
Error Report					
Class	# Cases	# Errors	% Error		
FALSE	184	22	11.96		
TRUE	99	71	71.72		
Overall	283	93	32.86		

1. KNN

Test Data scoring - Summary Report (for k=11) - KNN					
Cut off Prob.	0.5				
Classification Confusion Matrix					
	Predicted Class				
Actual Class	FALSE	TRUE			
FALSE	144	39			
TRUE	51	48			
Error Report					
Class	# Cases	# Errors	% Error		
FALSE	183	39	21.31		
TRUE	99	51	51.52		
Overall	282	90	31.91		

	Error Rate	% Improvement
KNN	31.91%	8.6 %
Logistic Regression	32.86%	5.7%

Conclusions

- Marginal but still significant Improvement over the Naïve rule.
- Can be used for further validation by Buyers/Sellers/Real Estate Professional's -> to use Zestimate or re-assess the home value.
- Models are parsimonious and all the inputs are available beforehand
- Road to improvement
 - Get more important variables (X's)
 - Get more data points